Optimal. Leaf size=27 \[ x^2-4 \left (\frac {3 \left (x+x^2\right )}{3-x^4}-\log (4)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 19, normalized size of antiderivative = 0.70, number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {28, 1858, 1586, 12, 30} \begin {gather*} x^2-\frac {12 x (x+1)}{3-x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 28
Rule 30
Rule 1586
Rule 1858
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-36-54 x-36 x^4-36 x^5+2 x^9}{\left (-3+x^4\right )^2} \, dx\\ &=-\frac {12 x (1+x)}{3-x^4}+\frac {1}{12} \int \frac {-72 x+24 x^5}{-3+x^4} \, dx\\ &=-\frac {12 x (1+x)}{3-x^4}+\frac {1}{12} \int 24 x \, dx\\ &=-\frac {12 x (1+x)}{3-x^4}+2 \int x \, dx\\ &=x^2-\frac {12 x (1+x)}{3-x^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 0.89 \begin {gather*} 2 \left (\frac {x^2}{2}+\frac {6 \left (x+x^2\right )}{-3+x^4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 20, normalized size = 0.74 \begin {gather*} \frac {x^{6} + 9 \, x^{2} + 12 \, x}{x^{4} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 18, normalized size = 0.67 \begin {gather*} x^{2} + \frac {12 \, {\left (x^{2} + x\right )}}{x^{4} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.67
method | result | size |
gosper | \(\frac {x \left (x^{5}+9 x +12\right )}{x^{4}-3}\) | \(18\) |
norman | \(\frac {x^{6}+9 x^{2}+12 x}{x^{4}-3}\) | \(21\) |
risch | \(x^{2}+\frac {12 x^{2}+12 x}{x^{4}-3}\) | \(22\) |
default | \(x^{2}-\frac {12 \left (-x^{2}-x \right )}{x^{4}-3}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 18, normalized size = 0.67 \begin {gather*} x^{2} + \frac {12 \, {\left (x^{2} + x\right )}}{x^{4} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 17, normalized size = 0.63 \begin {gather*} x^2+\frac {12\,x\,\left (x+1\right )}{x^4-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.56 \begin {gather*} x^{2} + \frac {12 x^{2} + 12 x}{x^{4} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________