Optimal. Leaf size=21 \[ 2 \left (e^{\frac {5 x}{\log \left (\frac {x}{2+x}\right )}}+3 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.78, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.046, Rules used = {6742, 6688, 6706} \begin {gather*} 6 x+2 e^{\frac {5 x}{\log \left (\frac {x}{x+2}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6688
Rule 6706
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (6+\frac {10 e^{\frac {5 x}{\log \left (\frac {x}{2+x}\right )}} \left (-2+2 \log \left (\frac {x}{2+x}\right )+x \log \left (\frac {x}{2+x}\right )\right )}{(2+x) \log ^2\left (\frac {x}{2+x}\right )}\right ) \, dx\\ &=6 x+10 \int \frac {e^{\frac {5 x}{\log \left (\frac {x}{2+x}\right )}} \left (-2+2 \log \left (\frac {x}{2+x}\right )+x \log \left (\frac {x}{2+x}\right )\right )}{(2+x) \log ^2\left (\frac {x}{2+x}\right )} \, dx\\ &=6 x+10 \int \frac {e^{\frac {5 x}{\log \left (\frac {x}{2+x}\right )}} \left (-2+(2+x) \log \left (\frac {x}{2+x}\right )\right )}{(2+x) \log ^2\left (\frac {x}{2+x}\right )} \, dx\\ &=2 e^{\frac {5 x}{\log \left (\frac {x}{2+x}\right )}}+6 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 21, normalized size = 1.00 \begin {gather*} 2 e^{\frac {5 x}{\log \left (\frac {x}{2+x}\right )}}+6 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 20, normalized size = 0.95 \begin {gather*} 6 \, x + 2 \, e^{\left (\frac {5 \, x}{\log \left (\frac {x}{x + 2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.01, size = 20, normalized size = 0.95 \begin {gather*} 6 \, x + 2 \, e^{\left (\frac {5 \, x}{\log \left (\frac {x}{x + 2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 21, normalized size = 1.00
method | result | size |
default | \(2 \,{\mathrm e}^{\frac {5 x}{\ln \left (\frac {x}{2+x}\right )}}+6 x\) | \(21\) |
risch | \(2 \,{\mathrm e}^{\frac {5 x}{\ln \left (\frac {x}{2+x}\right )}}+6 x\) | \(21\) |
norman | \(\frac {6 \ln \left (\frac {x}{2+x}\right ) x +2 \ln \left (\frac {x}{2+x}\right ) {\mathrm e}^{\frac {5 x}{\ln \left (\frac {x}{2+x}\right )}}}{\ln \left (\frac {x}{2+x}\right )}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 6 \, x - 2 \, \int \frac {5 \, {\left ({\left (x + 2\right )} \log \left (x + 2\right ) - {\left (x + 2\right )} \log \relax (x) + 2\right )} e^{\left (-\frac {5 \, x}{\log \left (x + 2\right ) - \log \relax (x)}\right )}}{{\left (x + 2\right )} \log \left (x + 2\right )^{2} - 2 \, {\left (x + 2\right )} \log \left (x + 2\right ) \log \relax (x) + {\left (x + 2\right )} \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.79, size = 20, normalized size = 0.95 \begin {gather*} 6\,x+2\,{\mathrm {e}}^{\frac {5\,x}{\ln \left (\frac {x}{x+2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 15, normalized size = 0.71 \begin {gather*} 6 x + 2 e^{\frac {5 x}{\log {\left (\frac {x}{x + 2} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________