Optimal. Leaf size=35 \[ \frac {2 \log (x)}{x \left (x-\frac {1}{25} \log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )\right ) (x+\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 13.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5000 x^2+1250 e^{5+x} x^2+\left (15000 x^2-3700 e^{5+x} x^2\right ) \log (x)+\left (10000 x-2450 e^{5+x} x\right ) \log ^2(x)+\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right ) \left (200 x-50 e^{5+x} x+\left (-400 x+100 e^{5+x} x\right ) \log (x)+\left (-200+50 e^{5+x}\right ) \log ^2(x)\right )}{-2500 x^6+625 e^{5+x} x^6+\left (-5000 x^5+1250 e^{5+x} x^5\right ) \log (x)+\left (-2500 x^4+625 e^{5+x} x^4\right ) \log ^2(x)+\log ^2\left (\frac {1}{4} \left (4-e^{5+x}\right )\right ) \left (-4 x^4+e^{5+x} x^4+\left (-8 x^3+2 e^{5+x} x^3\right ) \log (x)+\left (-4 x^2+e^{5+x} x^2\right ) \log ^2(x)\right )+\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right ) \left (200 x^5-50 e^{5+x} x^5+\left (400 x^4-100 e^{5+x} x^4\right ) \log (x)+\left (200 x^3-50 e^{5+x} x^3\right ) \log ^2(x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-50 \left (-4+e^{5+x}\right ) \log \left (1-\frac {e^{5+x}}{4}\right ) \left (-x+2 x \log (x)+\log ^2(x)\right )+50 x \left (-25 \left (-4+e^{5+x}\right ) x+2 \left (-150+37 e^{5+x}\right ) x \log (x)+\left (-200+49 e^{5+x}\right ) \log ^2(x)\right )}{\left (4-e^{5+x}\right ) x^2 \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx\\ &=\int \left (-\frac {2450 \log ^2(x)}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}+\frac {200 \log (x)}{\left (-4+e^{5+x}\right ) x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))}-\frac {50 (-25+74 \log (x))}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}+\frac {50 \log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right ) \left (-x+2 x \log (x)+\log ^2(x)\right )}{x^2 \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}\right ) \, dx\\ &=-\left (50 \int \frac {-25+74 \log (x)}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx\right )+50 \int \frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right ) \left (-x+2 x \log (x)+\log ^2(x)\right )}{x^2 \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx+200 \int \frac {\log (x)}{\left (-4+e^{5+x}\right ) x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx-2450 \int \frac {\log ^2(x)}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx\\ &=50 \int \left (\frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{x^2 \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2}+\frac {(-1-x) \log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}\right ) \, dx-50 \int \left (\frac {-25-74 x}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}+\frac {74}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))}\right ) \, dx+200 \int \frac {\log (x)}{\left (-4+e^{5+x}\right ) x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx-2450 \int \left (\frac {1}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2}+\frac {x}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}-\frac {2}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))}\right ) \, dx\\ &=50 \int \frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{x^2 \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2} \, dx-50 \int \frac {-25-74 x}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx+50 \int \frac {(-1-x) \log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx+200 \int \frac {\log (x)}{\left (-4+e^{5+x}\right ) x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx-2450 \int \frac {1}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2} \, dx-2450 \int \frac {x}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx-3700 \int \frac {1}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx+4900 \int \frac {1}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx\\ &=50 \int \frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{x^2 \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2} \, dx-50 \int \left (-\frac {25}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}-\frac {74 x}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}\right ) \, dx+50 \int \left (-\frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}-\frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2}\right ) \, dx+200 \int \frac {\log (x)}{\left (-4+e^{5+x}\right ) x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx-2450 \int \frac {1}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2} \, dx-2450 \int \frac {x}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx-3700 \int \frac {1}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx+4900 \int \frac {1}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx\\ &=50 \int \frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{x^2 \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2} \, dx-50 \int \frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx-50 \int \frac {\log \left (\frac {1}{4} \left (4-e^{5+x}\right )\right )}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx+200 \int \frac {\log (x)}{\left (-4+e^{5+x}\right ) x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx+1250 \int \frac {1}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx-2450 \int \frac {1}{x \left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2} \, dx-2450 \int \frac {x}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx+3700 \int \frac {x}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))^2} \, dx-3700 \int \frac {1}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx+4900 \int \frac {1}{\left (25 x-\log \left (1-\frac {e^{5+x}}{4}\right )\right )^2 (x+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 31, normalized size = 0.89 \begin {gather*} -\frac {50 \log (x)}{x \left (-25 x+\log \left (1-\frac {e^{5+x}}{4}\right )\right ) (x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 38, normalized size = 1.09 \begin {gather*} \frac {50 \, \log \relax (x)}{25 \, x^{3} + 25 \, x^{2} \log \relax (x) - {\left (x^{2} + x \log \relax (x)\right )} \log \left (-\frac {1}{4} \, e^{\left (x + 5\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.76, size = 61, normalized size = 1.74 \begin {gather*} \frac {50 \, \log \relax (x)}{25 \, x^{3} + 2 \, x^{2} \log \relax (2) + 25 \, x^{2} \log \relax (x) + 2 \, x \log \relax (2) \log \relax (x) - x^{2} \log \left (-e^{\left (x + 5\right )} + 4\right ) - x \log \relax (x) \log \left (-e^{\left (x + 5\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 31, normalized size = 0.89
method | result | size |
risch | \(\frac {50 \ln \relax (x )}{\left (x +\ln \relax (x )\right ) x \left (25 x -\ln \left (-\frac {{\mathrm e}^{5+x}}{4}+1\right )\right )}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.94, size = 52, normalized size = 1.49 \begin {gather*} \frac {50 \, \log \relax (x)}{25 \, x^{3} + 2 \, x^{2} \log \relax (2) + {\left (25 \, x^{2} + 2 \, x \log \relax (2)\right )} \log \relax (x) - {\left (x^{2} + x \log \relax (x)\right )} \log \left (-e^{\left (x + 5\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.66, size = 785, normalized size = 22.43 \begin {gather*} \frac {\frac {25\,\left (100\,x-25\,x\,{\mathrm {e}}^{x+5}-200\,{\ln \relax (x)}^2-300\,x\,\ln \relax (x)+49\,{\mathrm {e}}^{x+5}\,{\ln \relax (x)}^2+74\,x\,{\mathrm {e}}^{x+5}\,\ln \relax (x)\right )}{2\,x\,{\left (x+\ln \relax (x)\right )}^2\,\left (6\,{\mathrm {e}}^{x+5}-25\right )}-\frac {25\,\ln \left (1-\frac {{\mathrm {e}}^5\,{\mathrm {e}}^x}{4}\right )\,\left ({\mathrm {e}}^{x+5}-4\right )\,\left ({\ln \relax (x)}^2+2\,x\,\ln \relax (x)-x\right )}{2\,x^2\,{\left (x+\ln \relax (x)\right )}^2\,\left (6\,{\mathrm {e}}^{x+5}-25\right )}}{25\,x-\ln \left (1-\frac {{\mathrm {e}}^5\,{\mathrm {e}}^x}{4}\right )}-\frac {\frac {25\,\left (1825\,{\mathrm {e}}^{x+5}-7500\,x-444\,{\mathrm {e}}^{2\,x+10}+36\,{\mathrm {e}}^{3\,x+15}+5450\,x\,{\mathrm {e}}^{x+5}-1326\,x\,{\mathrm {e}}^{2\,x+10}+108\,x\,{\mathrm {e}}^{3\,x+15}+5375\,x^2\,{\mathrm {e}}^{x+5}-75\,x^3\,{\mathrm {e}}^{x+5}+25\,x^4\,{\mathrm {e}}^{x+5}+25\,x^5\,{\mathrm {e}}^{x+5}-1308\,x^2\,{\mathrm {e}}^{2\,x+10}+30\,x^3\,{\mathrm {e}}^{2\,x+10}+18\,x^4\,{\mathrm {e}}^{2\,x+10}+6\,x^5\,{\mathrm {e}}^{2\,x+10}+108\,x^2\,{\mathrm {e}}^{3\,x+15}-7500\,x^2-2500\right )}{4\,x\,{\left (x+1\right )}^3\,{\left (6\,{\mathrm {e}}^{x+5}-25\right )}^3}+\frac {25\,\ln \relax (x)\,\left (1825\,{\mathrm {e}}^{x+5}-5000\,x-444\,{\mathrm {e}}^{2\,x+10}+36\,{\mathrm {e}}^{3\,x+15}+3625\,x\,{\mathrm {e}}^{x+5}-882\,x\,{\mathrm {e}}^{2\,x+10}+72\,x\,{\mathrm {e}}^{3\,x+15}+50\,x^3\,{\mathrm {e}}^{x+5}+25\,x^4\,{\mathrm {e}}^{x+5}+12\,x^2\,{\mathrm {e}}^{2\,x+10}+12\,x^3\,{\mathrm {e}}^{2\,x+10}+6\,x^4\,{\mathrm {e}}^{2\,x+10}-2500\right )}{4\,x\,{\left (x+1\right )}^3\,{\left (6\,{\mathrm {e}}^{x+5}-25\right )}^3}}{x+\ln \relax (x)}+\frac {\frac {25\,\left (500\,x-98\,{\mathrm {e}}^{x+5}+12\,{\mathrm {e}}^{2\,x+10}-245\,x\,{\mathrm {e}}^{x+5}+30\,x\,{\mathrm {e}}^{2\,x+10}-97\,x^2\,{\mathrm {e}}^{x+5}+x^3\,{\mathrm {e}}^{x+5}+12\,x^2\,{\mathrm {e}}^{2\,x+10}+200\,x^2+200\right )}{4\,x\,\left (x+1\right )\,{\left (6\,{\mathrm {e}}^{x+5}-25\right )}^2}+\frac {25\,\ln \relax (x)\,\left (6\,{\mathrm {e}}^{2\,x+10}-49\,{\mathrm {e}}^{x+5}+x\,{\mathrm {e}}^{x+5}+x^2\,{\mathrm {e}}^{x+5}+100\right )}{4\,x\,\left (x+1\right )\,{\left (6\,{\mathrm {e}}^{x+5}-25\right )}^2}}{x^2+2\,x\,\ln \relax (x)+{\ln \relax (x)}^2}-\frac {\frac {25\,x^3}{12}+\frac {25\,x^2}{6}+\frac {125\,x}{24}+\frac {25}{12}}{x^5+3\,x^4+3\,x^3+x^2}+\frac {15625\,\left (x^7+3\,x^6+3\,x^5+x^4\right )}{12\,x^3\,{\left (x+1\right )}^4\,\left (11250\,{\mathrm {e}}^{x+5}-2700\,{\mathrm {e}}^{2\,x+10}+216\,{\mathrm {e}}^{3\,x+15}-15625\right )}-\frac {25\,\left (-x^7-3\,x^6-2\,x^5+3\,x^4+8\,x^3+7\,x^2+2\,x\right )}{24\,x^3\,{\left (x+1\right )}^4\,\left (6\,{\mathrm {e}}^{x+5}-25\right )}+\frac {625\,\left (3\,x^7+9\,x^6+10\,x^5+5\,x^4+x^3\right )}{24\,x^3\,{\left (x+1\right )}^4\,\left (36\,{\mathrm {e}}^{2\,x+10}-300\,{\mathrm {e}}^{x+5}+625\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 37, normalized size = 1.06 \begin {gather*} - \frac {50 \log {\relax (x )}}{- 25 x^{3} - 25 x^{2} \log {\relax (x )} + \left (x^{2} + x \log {\relax (x )}\right ) \log {\left (1 - \frac {e^{x + 5}}{4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________