Optimal. Leaf size=33 \[ \frac {(4-x) x^2}{\left (2+\frac {e^{2 x}}{9}\right ) \left (-1+\frac {x^2}{9}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-104976 x+39366 x^2-1458 x^4+e^{2 x} \left (-5832 x+8019 x^2-1458 x^3-729 x^4+162 x^5\right )}{26244-5832 x^2+324 x^4+e^{4 x} \left (81-18 x^2+x^4\right )+e^{2 x} \left (2916-648 x^2+36 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {81 x \left (-18 \left (72-27 x+x^3\right )+e^{2 x} \left (-72+99 x-18 x^2-9 x^3+2 x^4\right )\right )}{\left (18+e^{2 x}\right )^2 \left (9-x^2\right )^2} \, dx\\ &=81 \int \frac {x \left (-18 \left (72-27 x+x^3\right )+e^{2 x} \left (-72+99 x-18 x^2-9 x^3+2 x^4\right )\right )}{\left (18+e^{2 x}\right )^2 \left (9-x^2\right )^2} \, dx\\ &=81 \int \left (-\frac {36 (-4+x) x^2}{\left (18+e^{2 x}\right )^2 \left (-9+x^2\right )}+\frac {x \left (-72+99 x-18 x^2-9 x^3+2 x^4\right )}{\left (18+e^{2 x}\right ) \left (-9+x^2\right )^2}\right ) \, dx\\ &=81 \int \frac {x \left (-72+99 x-18 x^2-9 x^3+2 x^4\right )}{\left (18+e^{2 x}\right ) \left (-9+x^2\right )^2} \, dx-2916 \int \frac {(-4+x) x^2}{\left (18+e^{2 x}\right )^2 \left (-9+x^2\right )} \, dx\\ &=81 \int \left (-\frac {9}{18+e^{2 x}}-\frac {3}{2 \left (18+e^{2 x}\right ) (-3+x)^2}-\frac {3}{\left (18+e^{2 x}\right ) (-3+x)}+\frac {2 x}{18+e^{2 x}}+\frac {21}{2 \left (18+e^{2 x}\right ) (3+x)^2}+\frac {21}{\left (18+e^{2 x}\right ) (3+x)}\right ) \, dx-2916 \int \left (-\frac {4}{\left (18+e^{2 x}\right )^2}-\frac {3}{2 \left (18+e^{2 x}\right )^2 (-3+x)}+\frac {x}{\left (18+e^{2 x}\right )^2}+\frac {21}{2 \left (18+e^{2 x}\right )^2 (3+x)}\right ) \, dx\\ &=-\left (\frac {243}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)^2} \, dx\right )+162 \int \frac {x}{18+e^{2 x}} \, dx-243 \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)} \, dx-729 \int \frac {1}{18+e^{2 x}} \, dx+\frac {1701}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)^2} \, dx+1701 \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)} \, dx-2916 \int \frac {x}{\left (18+e^{2 x}\right )^2} \, dx+4374 \int \frac {1}{\left (18+e^{2 x}\right )^2 (-3+x)} \, dx+11664 \int \frac {1}{\left (18+e^{2 x}\right )^2} \, dx-30618 \int \frac {1}{\left (18+e^{2 x}\right )^2 (3+x)} \, dx\\ &=\frac {9 x^2}{2}-9 \int \frac {e^{2 x} x}{18+e^{2 x}} \, dx-\frac {243}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)^2} \, dx+162 \int \frac {e^{2 x} x}{\left (18+e^{2 x}\right )^2} \, dx-162 \int \frac {x}{18+e^{2 x}} \, dx-243 \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)} \, dx-\frac {729}{2} \operatorname {Subst}\left (\int \frac {1}{x (18+x)} \, dx,x,e^{2 x}\right )+\frac {1701}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)^2} \, dx+1701 \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)} \, dx+4374 \int \frac {1}{\left (18+e^{2 x}\right )^2 (-3+x)} \, dx+5832 \operatorname {Subst}\left (\int \frac {1}{x (18+x)^2} \, dx,x,e^{2 x}\right )-30618 \int \frac {1}{\left (18+e^{2 x}\right )^2 (3+x)} \, dx\\ &=-\frac {81 x}{18+e^{2 x}}-\frac {9}{2} x \log \left (1+\frac {e^{2 x}}{18}\right )+\frac {9}{2} \int \log \left (1+\frac {e^{2 x}}{18}\right ) \, dx+9 \int \frac {e^{2 x} x}{18+e^{2 x}} \, dx-\frac {81}{4} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x}\right )+\frac {81}{4} \operatorname {Subst}\left (\int \frac {1}{18+x} \, dx,x,e^{2 x}\right )+81 \int \frac {1}{18+e^{2 x}} \, dx-\frac {243}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)^2} \, dx-243 \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)} \, dx+\frac {1701}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)^2} \, dx+1701 \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)} \, dx+4374 \int \frac {1}{\left (18+e^{2 x}\right )^2 (-3+x)} \, dx+5832 \operatorname {Subst}\left (\int \left (\frac {1}{324 x}-\frac {1}{18 (18+x)^2}-\frac {1}{324 (18+x)}\right ) \, dx,x,e^{2 x}\right )-30618 \int \frac {1}{\left (18+e^{2 x}\right )^2 (3+x)} \, dx\\ &=\frac {324}{18+e^{2 x}}-\frac {9 x}{2}-\frac {81 x}{18+e^{2 x}}+\frac {9}{4} \log \left (18+e^{2 x}\right )+\frac {9}{4} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{18}\right )}{x} \, dx,x,e^{2 x}\right )-\frac {9}{2} \int \log \left (1+\frac {e^{2 x}}{18}\right ) \, dx+\frac {81}{2} \operatorname {Subst}\left (\int \frac {1}{x (18+x)} \, dx,x,e^{2 x}\right )-\frac {243}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)^2} \, dx-243 \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)} \, dx+\frac {1701}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)^2} \, dx+1701 \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)} \, dx+4374 \int \frac {1}{\left (18+e^{2 x}\right )^2 (-3+x)} \, dx-30618 \int \frac {1}{\left (18+e^{2 x}\right )^2 (3+x)} \, dx\\ &=\frac {324}{18+e^{2 x}}-\frac {9 x}{2}-\frac {81 x}{18+e^{2 x}}+\frac {9}{4} \log \left (18+e^{2 x}\right )-\frac {9}{4} \text {Li}_2\left (-\frac {e^{2 x}}{18}\right )+\frac {9}{4} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x}\right )-\frac {9}{4} \operatorname {Subst}\left (\int \frac {1}{18+x} \, dx,x,e^{2 x}\right )-\frac {9}{4} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{18}\right )}{x} \, dx,x,e^{2 x}\right )-\frac {243}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)^2} \, dx-243 \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)} \, dx+\frac {1701}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)^2} \, dx+1701 \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)} \, dx+4374 \int \frac {1}{\left (18+e^{2 x}\right )^2 (-3+x)} \, dx-30618 \int \frac {1}{\left (18+e^{2 x}\right )^2 (3+x)} \, dx\\ &=\frac {324}{18+e^{2 x}}-\frac {81 x}{18+e^{2 x}}-\frac {243}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)^2} \, dx-243 \int \frac {1}{\left (18+e^{2 x}\right ) (-3+x)} \, dx+\frac {1701}{2} \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)^2} \, dx+1701 \int \frac {1}{\left (18+e^{2 x}\right ) (3+x)} \, dx+4374 \int \frac {1}{\left (18+e^{2 x}\right )^2 (-3+x)} \, dx-30618 \int \frac {1}{\left (18+e^{2 x}\right )^2 (3+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 24, normalized size = 0.73 \begin {gather*} -\frac {81 (-4+x) x^2}{\left (18+e^{2 x}\right ) \left (-9+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 30, normalized size = 0.91 \begin {gather*} -\frac {81 \, {\left (x^{3} - 4 \, x^{2}\right )}}{18 \, x^{2} + {\left (x^{2} - 9\right )} e^{\left (2 \, x\right )} - 162} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 34, normalized size = 1.03 \begin {gather*} -\frac {81 \, {\left (x^{3} - 4 \, x^{2}\right )}}{x^{2} e^{\left (2 \, x\right )} + 18 \, x^{2} - 9 \, e^{\left (2 \, x\right )} - 162} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 24, normalized size = 0.73
method | result | size |
risch | \(-\frac {81 \left (x -4\right ) x^{2}}{\left (x^{2}-9\right ) \left ({\mathrm e}^{2 x}+18\right )}\) | \(24\) |
norman | \(\frac {-81 x^{3}+324 x^{2}}{\left ({\mathrm e}^{2 x}+18\right ) \left (x^{2}-9\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 30, normalized size = 0.91 \begin {gather*} -\frac {81 \, {\left (x^{3} - 4 \, x^{2}\right )}}{18 \, x^{2} + {\left (x^{2} - 9\right )} e^{\left (2 \, x\right )} - 162} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.44, size = 36, normalized size = 1.09 \begin {gather*} -\frac {81\,\left (x^5-4\,x^4-9\,x^3+36\,x^2\right )}{{\left (x^2-9\right )}^2\,\left ({\mathrm {e}}^{2\,x}+18\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 26, normalized size = 0.79 \begin {gather*} \frac {- 81 x^{3} + 324 x^{2}}{18 x^{2} + \left (x^{2} - 9\right ) e^{2 x} - 162} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________