Optimal. Leaf size=23 \[ x \left (-8+e^9-x^2-\frac {x}{-x+\log (2)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 29, normalized size of antiderivative = 1.26, number of steps used = 4, number of rules used = 3, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6, 27, 1850} \begin {gather*} -x^3-\left (7-e^9\right ) x+\frac {\log ^2(2)}{x-\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-7+e^9\right ) x^2-3 x^4+\left (14 x-2 e^9 x+6 x^3\right ) \log (2)+\left (-8+e^9-3 x^2\right ) \log ^2(2)}{x^2-2 x \log (2)+\log ^2(2)} \, dx\\ &=\int \frac {\left (-7+e^9\right ) x^2-3 x^4+\left (14 x-2 e^9 x+6 x^3\right ) \log (2)+\left (-8+e^9-3 x^2\right ) \log ^2(2)}{(x-\log (2))^2} \, dx\\ &=\int \left (-7 \left (1-\frac {e^9}{7}\right )-3 x^2-\frac {\log ^2(2)}{(x-\log (2))^2}\right ) \, dx\\ &=-\left (\left (7-e^9\right ) x\right )-x^3+\frac {\log ^2(2)}{x-\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.10, size = 75, normalized size = 3.26 \begin {gather*} -(x-\log (2))^3-\frac {1}{2} (x-\log (2))^2 \log (64)+\frac {\log ^2(2) \left (1+6 \log ^2(2)-\log (2) \log (64)\right )}{x-\log (2)}+(x-\log (2)) \left (-7+e^9-21 \log ^2(2)+\log (8) \log (64)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 48, normalized size = 2.09 \begin {gather*} -\frac {x^{4} - x^{2} e^{9} + 7 \, x^{2} - {\left (x^{3} - x e^{9} + 7 \, x\right )} \log \relax (2) - \log \relax (2)^{2}}{x - \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 26, normalized size = 1.13 \begin {gather*} -x^{3} + x e^{9} - 7 \, x + \frac {\log \relax (2)^{2}}{x - \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 27, normalized size = 1.17
method | result | size |
default | \(-x^{3}+x \,{\mathrm e}^{9}-7 x +\frac {\ln \relax (2)^{2}}{x -\ln \relax (2)}\) | \(27\) |
risch | \(-x^{3}+x \,{\mathrm e}^{9}-7 x -\frac {\ln \relax (2)^{2}}{\ln \relax (2)-x}\) | \(28\) |
norman | \(\frac {x^{4}-x^{3} \ln \relax (2)+\left (-{\mathrm e}^{9}+7\right ) x^{2}+{\mathrm e}^{9} \ln \relax (2)^{2}-8 \ln \relax (2)^{2}}{\ln \relax (2)-x}\) | \(44\) |
gosper | \(\frac {-x^{3} \ln \relax (2)+x^{4}+{\mathrm e}^{9} \ln \relax (2)^{2}-x^{2} {\mathrm e}^{9}-8 \ln \relax (2)^{2}+7 x^{2}}{\ln \relax (2)-x}\) | \(46\) |
meijerg | \(-\frac {8 x}{1-\frac {x}{\ln \relax (2)}}+\frac {{\mathrm e}^{9} x}{1-\frac {x}{\ln \relax (2)}}-\left (2 \,{\mathrm e}^{9}-14\right ) \ln \relax (2) \left (\frac {x}{\ln \relax (2) \left (1-\frac {x}{\ln \relax (2)}\right )}+\ln \left (1-\frac {x}{\ln \relax (2)}\right )\right )+6 \ln \relax (2)^{3} \left (\frac {x \left (-\frac {2 x^{2}}{\ln \relax (2)^{2}}-\frac {6 x}{\ln \relax (2)}+12\right )}{4 \ln \relax (2) \left (1-\frac {x}{\ln \relax (2)}\right )}+3 \ln \left (1-\frac {x}{\ln \relax (2)}\right )\right )-\left (-3 \ln \relax (2)^{2}+{\mathrm e}^{9}-7\right ) \ln \relax (2) \left (-\frac {x \left (-\frac {3 x}{\ln \relax (2)}+6\right )}{3 \ln \relax (2) \left (1-\frac {x}{\ln \relax (2)}\right )}-2 \ln \left (1-\frac {x}{\ln \relax (2)}\right )\right )+3 \ln \relax (2)^{3} \left (-\frac {x \left (-\frac {5 x^{3}}{\ln \relax (2)^{3}}-\frac {10 x^{2}}{\ln \relax (2)^{2}}-\frac {30 x}{\ln \relax (2)}+60\right )}{15 \ln \relax (2) \left (1-\frac {x}{\ln \relax (2)}\right )}-4 \ln \left (1-\frac {x}{\ln \relax (2)}\right )\right )\) | \(242\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 25, normalized size = 1.09 \begin {gather*} -x^{3} + x {\left (e^{9} - 7\right )} + \frac {\log \relax (2)^{2}}{x - \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 25, normalized size = 1.09 \begin {gather*} \frac {{\ln \relax (2)}^2}{x-\ln \relax (2)}+x\,\left ({\mathrm {e}}^9-7\right )-x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.83 \begin {gather*} - x^{3} - x \left (7 - e^{9}\right ) + \frac {\log {\relax (2 )}^{2}}{x - \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________