Optimal. Leaf size=23 \[ 5 \log (x) \left (5+\log \left (-5 e^{-\frac {2-x}{e^9}}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\log (x) \left (5+\log \left (e^{-\frac {2-x}{e^9}} \left (-5+e^{\frac {2-x}{e^9}} x\right )\right )\right ) \left (-125 e^9+25 e^{9+\frac {2-x}{e^9}} x+\left (-25 x+5 e^{9+\frac {2-x}{e^9}} x\right ) \log (x)+\left (-25 e^9+5 e^{9+\frac {2-x}{e^9}} x\right ) \log \left (e^{-\frac {2-x}{e^9}} \left (-5+e^{\frac {2-x}{e^9}} x\right )\right )\right )}{\left (-25 e^9 x+5 e^{9+\frac {2-x}{e^9}} x^2\right ) \log (x)+\left (-5 e^9 x+e^{9+\frac {2-x}{e^9}} x^2\right ) \log (x) \log \left (e^{-\frac {2-x}{e^9}} \left (-5+e^{\frac {2-x}{e^9}} x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 \left (e^{9+\frac {2}{e^9}}-5 e^{\frac {x}{e^9}}\right ) x \log (x)+5 e^9 \left (5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x\right ) \left (5+\log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )\right )}{e^9 x \left (5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x\right )} \, dx\\ &=\frac {\int \frac {-5 \left (e^{9+\frac {2}{e^9}}-5 e^{\frac {x}{e^9}}\right ) x \log (x)+5 e^9 \left (5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x\right ) \left (5+\log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )\right )}{x \left (5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x\right )} \, dx}{e^9}\\ &=\frac {\int \left (\frac {5 e^{\frac {2}{e^9}} \left (e^9-x\right ) \log (x)}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x}+\frac {5 \left (5 e^9+x \log (x)+e^9 \log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )\right )}{x}\right ) \, dx}{e^9}\\ &=\frac {5 \int \frac {5 e^9+x \log (x)+e^9 \log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )}{x} \, dx}{e^9}+\left (5 e^{-9+\frac {2}{e^9}}\right ) \int \frac {\left (e^9-x\right ) \log (x)}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx\\ &=\frac {5 \int \left (\frac {5 e^9+x \log (x)}{x}+\frac {e^9 \log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )}{x}\right ) \, dx}{e^9}-\left (5 e^{-9+\frac {2}{e^9}}\right ) \int \frac {-e^9 \int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx-\int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx}{x} \, dx-\left (5 e^{-9+\frac {2}{e^9}} \log (x)\right ) \int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx-\left (5 e^{\frac {2}{e^9}} \log (x)\right ) \int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx\\ &=5 \int \frac {\log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )}{x} \, dx+\frac {5 \int \frac {5 e^9+x \log (x)}{x} \, dx}{e^9}-\left (5 e^{-9+\frac {2}{e^9}}\right ) \int \left (-\frac {e^9 \int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx}{x}-\frac {\int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx}{x}\right ) \, dx-\left (5 e^{-9+\frac {2}{e^9}} \log (x)\right ) \int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx-\left (5 e^{\frac {2}{e^9}} \log (x)\right ) \int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx\\ &=5 \int \frac {\log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )}{x} \, dx+\frac {5 \int \left (\frac {5 e^9}{x}+\log (x)\right ) \, dx}{e^9}+\left (5 e^{-9+\frac {2}{e^9}}\right ) \int \frac {\int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx}{x} \, dx+\left (5 e^{\frac {2}{e^9}}\right ) \int \frac {\int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx}{x} \, dx-\left (5 e^{-9+\frac {2}{e^9}} \log (x)\right ) \int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx-\left (5 e^{\frac {2}{e^9}} \log (x)\right ) \int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx\\ &=25 \log (x)+5 \int \frac {\log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )}{x} \, dx+\frac {5 \int \log (x) \, dx}{e^9}+\left (5 e^{-9+\frac {2}{e^9}}\right ) \int \frac {\int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx}{x} \, dx+\left (5 e^{\frac {2}{e^9}}\right ) \int \frac {\int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx}{x} \, dx-\left (5 e^{-9+\frac {2}{e^9}} \log (x)\right ) \int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx-\left (5 e^{\frac {2}{e^9}} \log (x)\right ) \int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx\\ &=-\frac {5 x}{e^9}+25 \log (x)+\frac {5 x \log (x)}{e^9}+5 \int \frac {\log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )}{x} \, dx+\left (5 e^{-9+\frac {2}{e^9}}\right ) \int \frac {\int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx}{x} \, dx+\left (5 e^{\frac {2}{e^9}}\right ) \int \frac {\int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx}{x} \, dx-\left (5 e^{-9+\frac {2}{e^9}} \log (x)\right ) \int \frac {x}{-5 e^{\frac {x}{e^9}}+e^{\frac {2}{e^9}} x} \, dx-\left (5 e^{\frac {2}{e^9}} \log (x)\right ) \int \frac {1}{5 e^{\frac {x}{e^9}}-e^{\frac {2}{e^9}} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 0.87 \begin {gather*} 5 \log (x) \left (5+\log \left (-5 e^{\frac {-2+x}{e^9}}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 41, normalized size = 1.78 \begin {gather*} 5 \, \log \left ({\left (x e^{\left (-{\left (x - 9 \, e^{9} - 2\right )} e^{\left (-9\right )}\right )} - 5 \, e^{9}\right )} e^{\left ({\left (x - 9 \, e^{9} - 2\right )} e^{\left (-9\right )}\right )}\right ) \log \relax (x) + 25 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 36, normalized size = 1.57 \begin {gather*} 5 \, {\left (e^{9} \log \left (x e^{\left (2 \, e^{\left (-9\right )}\right )} - 5 \, e^{\left (x e^{\left (-9\right )}\right )}\right ) \log \relax (x) + 5 \, e^{9} \log \relax (x) - 2 \, \log \relax (x)\right )} e^{\left (-9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 212, normalized size = 9.22
method | result | size |
risch | \(-5 \ln \relax (x ) \ln \left ({\mathrm e}^{-\left (x -2\right ) {\mathrm e}^{-9}}\right )+5 \ln \relax (x ) \ln \left (x \,{\mathrm e}^{-\left (x -2\right ) {\mathrm e}^{-9}}-5\right )-\frac {5 i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{-\left (x -2\right ) {\mathrm e}^{-9}}-5\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x -2\right ) {\mathrm e}^{-9}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x -2\right ) {\mathrm e}^{-9}} \left (x \,{\mathrm e}^{-\left (x -2\right ) {\mathrm e}^{-9}}-5\right )\right )}{2}+\frac {5 i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (x \,{\mathrm e}^{-\left (x -2\right ) {\mathrm e}^{-9}}-5\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x -2\right ) {\mathrm e}^{-9}} \left (x \,{\mathrm e}^{-\left (x -2\right ) {\mathrm e}^{-9}}-5\right )\right )^{2}}{2}+\frac {5 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x -2\right ) {\mathrm e}^{-9}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x -2\right ) {\mathrm e}^{-9}} \left (x \,{\mathrm e}^{-\left (x -2\right ) {\mathrm e}^{-9}}-5\right )\right )^{2}}{2}-\frac {5 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x -2\right ) {\mathrm e}^{-9}} \left (x \,{\mathrm e}^{-\left (x -2\right ) {\mathrm e}^{-9}}-5\right )\right )^{3}}{2}+25 \ln \relax (x )\) | \(212\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 35, normalized size = 1.52 \begin {gather*} 5 \, {\left (e^{9} \log \left (x e^{\left (2 \, e^{\left (-9\right )}\right )} - 5 \, e^{\left (x e^{\left (-9\right )}\right )}\right ) \log \relax (x) + {\left (5 \, e^{9} - 2\right )} \log \relax (x)\right )} e^{\left (-9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.01, size = 21, normalized size = 0.91 \begin {gather*} 5\,\ln \relax (x)\,\left (\ln \left (x-5\,{\mathrm {e}}^{-2\,{\mathrm {e}}^{-9}}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-9}}\right )+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.66, size = 31, normalized size = 1.35 \begin {gather*} 5 \log {\relax (x )} \log {\left (\left (x e^{\frac {2 - x}{e^{9}}} - 5\right ) e^{- \frac {2 - x}{e^{9}}} \right )} + 25 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________