Optimal. Leaf size=23 \[ \frac {3}{x}+2 x-\frac {3+\frac {5}{x}}{\log ^2(\log (3))} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 17, normalized size of antiderivative = 0.74, number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 14} \begin {gather*} 2 x+\frac {3-\frac {5}{\log ^2(\log (3))}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {5+\left (-3+2 x^2\right ) \log ^2(\log (3))}{x^2} \, dx}{\log ^2(\log (3))}\\ &=\frac {\int \left (2 \log ^2(\log (3))+\frac {5-3 \log ^2(\log (3))}{x^2}\right ) \, dx}{\log ^2(\log (3))}\\ &=2 x+\frac {3-\frac {5}{\log ^2(\log (3))}}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.83 \begin {gather*} \frac {3}{x}+2 x-\frac {5}{x \log ^2(\log (3))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 24, normalized size = 1.04 \begin {gather*} \frac {{\left (2 \, x^{2} + 3\right )} \log \left (\log \relax (3)\right )^{2} - 5}{x \log \left (\log \relax (3)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 28, normalized size = 1.22 \begin {gather*} \frac {2 \, x \log \left (\log \relax (3)\right )^{2} + \frac {3 \, \log \left (\log \relax (3)\right )^{2} - 5}{x}}{\log \left (\log \relax (3)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 20, normalized size = 0.87
method | result | size |
risch | \(2 x +\frac {3}{x}-\frac {5}{\ln \left (\ln \relax (3)\right )^{2} x}\) | \(20\) |
gosper | \(\frac {2 \ln \left (\ln \relax (3)\right )^{2} x^{2}-5+3 \ln \left (\ln \relax (3)\right )^{2}}{\ln \left (\ln \relax (3)\right )^{2} x}\) | \(29\) |
default | \(\frac {2 x \ln \left (\ln \relax (3)\right )^{2}-\frac {-3 \ln \left (\ln \relax (3)\right )^{2}+5}{x}}{\ln \left (\ln \relax (3)\right )^{2}}\) | \(30\) |
norman | \(\frac {\frac {3 \ln \left (\ln \relax (3)\right )^{2}-5}{\ln \left (\ln \relax (3)\right )}+2 x^{2} \ln \left (\ln \relax (3)\right )}{\ln \left (\ln \relax (3)\right ) x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 28, normalized size = 1.22 \begin {gather*} \frac {2 \, x \log \left (\log \relax (3)\right )^{2} + \frac {3 \, \log \left (\log \relax (3)\right )^{2} - 5}{x}}{\log \left (\log \relax (3)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 22, normalized size = 0.96 \begin {gather*} 2\,x+\frac {3\,{\ln \left (\ln \relax (3)\right )}^2-5}{x\,{\ln \left (\ln \relax (3)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 27, normalized size = 1.17 \begin {gather*} \frac {2 x \log {\left (\log {\relax (3 )} \right )}^{2} + \frac {-5 + 3 \log {\left (\log {\relax (3 )} \right )}^{2}}{x}}{\log {\left (\log {\relax (3 )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________