Optimal. Leaf size=28 \[ \frac {\left (2+x-x^2+\log (4)\right ) \log ^2\left (\frac {5+x}{x}\right )}{e^4+x} \]
________________________________________________________________________________________
Rubi [F] time = 5.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-20 x-10 x^2+10 x^3+e^4 \left (-20-10 x+10 x^2\right )+\left (-10 e^4-10 x\right ) \log (4)\right ) \log \left (\frac {5+x}{x}\right )+\left (-10 x-2 x^2-5 x^3-x^4+e^4 \left (5 x-9 x^2-2 x^3\right )+\left (-5 x-x^2\right ) \log (4)\right ) \log ^2\left (\frac {5+x}{x}\right )}{5 x^3+x^4+e^8 \left (5 x+x^2\right )+e^4 \left (10 x^2+2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log \left (1+\frac {5}{x}\right ) \left (\frac {10 \left (e^4+x\right ) \left (-2-x+x^2-\log (4)\right )}{x (5+x)}-\left (2+x^2+e^4 (-1+2 x)+\log (4)\right ) \log \left (\frac {5+x}{x}\right )\right )}{\left (e^4+x\right )^2} \, dx\\ &=\int \left (\frac {10 \left (-2-x+x^2-\log (4)\right ) \log \left (1+\frac {5}{x}\right )}{x (5+x) \left (e^4+x\right )}+\frac {\left (-2+e^4-2 e^4 x-x^2-\log (4)\right ) \log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2}\right ) \, dx\\ &=10 \int \frac {\left (-2-x+x^2-\log (4)\right ) \log \left (1+\frac {5}{x}\right )}{x (5+x) \left (e^4+x\right )} \, dx+\int \frac {\left (-2+e^4-2 e^4 x-x^2-\log (4)\right ) \log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2} \, dx\\ &=10 \int \frac {\left (-2-x+x^2-\log (4)\right ) \log \left (\frac {5+x}{x}\right )}{x (5+x) \left (e^4+x\right )} \, dx+\int \frac {\left (-2+e^4-2 e^4 x-x^2-\log (4)\right ) \log ^2\left (\frac {5+x}{x}\right )}{\left (e^4+x\right )^2} \, dx\\ &=10 \int \left (\frac {(-2-\log (4)) \log \left (\frac {5+x}{x}\right )}{5 e^4 x}+\frac {\left (-2+e^4+e^8-\log (4)\right ) \log \left (\frac {5+x}{x}\right )}{e^4 \left (-5+e^4\right ) \left (e^4+x\right )}+\frac {(-28+\log (4)) \log \left (\frac {5+x}{x}\right )}{5 \left (-5+e^4\right ) (5+x)}\right ) \, dx+\int \left (-\log ^2\left (\frac {5+x}{x}\right )+\frac {\left (-2+e^4+e^8-\log (4)\right ) \log ^2\left (\frac {5+x}{x}\right )}{\left (e^4+x\right )^2}\right ) \, dx\\ &=\frac {(2 (28-\log (4))) \int \frac {\log \left (\frac {5+x}{x}\right )}{5+x} \, dx}{5-e^4}+\left (-2+e^4+e^8-\log (4)\right ) \int \frac {\log ^2\left (\frac {5+x}{x}\right )}{\left (e^4+x\right )^2} \, dx-\frac {(2 (2+\log (4))) \int \frac {\log \left (\frac {5+x}{x}\right )}{x} \, dx}{e^4}+\frac {\left (10 \left (2-e^4-e^8+\log (4)\right )\right ) \int \frac {\log \left (\frac {5+x}{x}\right )}{e^4+x} \, dx}{e^4 \left (5-e^4\right )}-\int \log ^2\left (\frac {5+x}{x}\right ) \, dx\\ &=-\frac {2 (2+\log (4)) \text {Li}_2\left (1-\frac {5+x}{x}\right )}{e^4}+\frac {(2 (28-\log (4))) \int \frac {\log \left (1+\frac {5}{x}\right )}{5+x} \, dx}{5-e^4}+\left (-2+e^4+e^8-\log (4)\right ) \int \frac {\log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2} \, dx+\frac {\left (10 \left (2-e^4-e^8+\log (4)\right )\right ) \int \frac {\log \left (1+\frac {5}{x}\right )}{e^4+x} \, dx}{e^4 \left (5-e^4\right )}-\int \log ^2\left (1+\frac {5}{x}\right ) \, dx\\ &=-\left ((5+x) \log ^2\left (1+\frac {5}{x}\right )\right )+\frac {2 (28-\log (4)) \log \left (1+\frac {5}{x}\right ) \log (5+x)}{5-e^4}+\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (1+\frac {5}{x}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-\frac {2 (2+\log (4)) \text {Li}_2\left (1-\frac {5+x}{x}\right )}{e^4}-10 \int \frac {\log \left (1+\frac {5}{x}\right )}{x} \, dx+\frac {(10 (28-\log (4))) \int \frac {\log (5+x)}{\left (1+\frac {5}{x}\right ) x^2} \, dx}{5-e^4}+\left (-2+e^4+e^8-\log (4)\right ) \int \frac {\log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2} \, dx+\frac {\left (50 \left (2-e^4-e^8+\log (4)\right )\right ) \int \frac {\log \left (e^4+x\right )}{\left (1+\frac {5}{x}\right ) x^2} \, dx}{e^4 \left (5-e^4\right )}\\ &=-\left ((5+x) \log ^2\left (1+\frac {5}{x}\right )\right )+\frac {2 (28-\log (4)) \log \left (1+\frac {5}{x}\right ) \log (5+x)}{5-e^4}+\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (1+\frac {5}{x}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-10 \text {Li}_2\left (-\frac {5}{x}\right )-\frac {2 (2+\log (4)) \text {Li}_2\left (1-\frac {5+x}{x}\right )}{e^4}+\frac {(10 (28-\log (4))) \int \left (\frac {\log (5+x)}{5 x}-\frac {\log (5+x)}{5 (5+x)}\right ) \, dx}{5-e^4}+\left (-2+e^4+e^8-\log (4)\right ) \int \frac {\log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2} \, dx+\frac {\left (50 \left (2-e^4-e^8+\log (4)\right )\right ) \int \left (\frac {\log \left (e^4+x\right )}{5 x}-\frac {\log \left (e^4+x\right )}{5 (5+x)}\right ) \, dx}{e^4 \left (5-e^4\right )}\\ &=-\left ((5+x) \log ^2\left (1+\frac {5}{x}\right )\right )+\frac {2 (28-\log (4)) \log \left (1+\frac {5}{x}\right ) \log (5+x)}{5-e^4}+\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (1+\frac {5}{x}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-10 \text {Li}_2\left (-\frac {5}{x}\right )-\frac {2 (2+\log (4)) \text {Li}_2\left (1-\frac {5+x}{x}\right )}{e^4}+\frac {(2 (28-\log (4))) \int \frac {\log (5+x)}{x} \, dx}{5-e^4}-\frac {(2 (28-\log (4))) \int \frac {\log (5+x)}{5+x} \, dx}{5-e^4}+\left (-2+e^4+e^8-\log (4)\right ) \int \frac {\log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2} \, dx+\frac {\left (10 \left (2-e^4-e^8+\log (4)\right )\right ) \int \frac {\log \left (e^4+x\right )}{x} \, dx}{e^4 \left (5-e^4\right )}-\frac {\left (10 \left (2-e^4-e^8+\log (4)\right )\right ) \int \frac {\log \left (e^4+x\right )}{5+x} \, dx}{e^4 \left (5-e^4\right )}\\ &=-\left ((5+x) \log ^2\left (1+\frac {5}{x}\right )\right )+\frac {40 \left (2-e^4-e^8+\log (4)\right ) \log (x)}{e^4 \left (5-e^4\right )}+\frac {2 (28-\log (4)) \log (5) \log (x)}{5-e^4}+\frac {2 (28-\log (4)) \log \left (1+\frac {5}{x}\right ) \log (5+x)}{5-e^4}+\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (1+\frac {5}{x}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (\frac {5+x}{5-e^4}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-10 \text {Li}_2\left (-\frac {5}{x}\right )-\frac {2 (2+\log (4)) \text {Li}_2\left (1-\frac {5+x}{x}\right )}{e^4}+\frac {(2 (28-\log (4))) \int \frac {\log \left (1+\frac {x}{5}\right )}{x} \, dx}{5-e^4}-\frac {(2 (28-\log (4))) \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,5+x\right )}{5-e^4}+\left (-2+e^4+e^8-\log (4)\right ) \int \frac {\log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2} \, dx+\frac {\left (10 \left (2-e^4-e^8+\log (4)\right )\right ) \int \frac {\log \left (\frac {5+x}{5-e^4}\right )}{e^4+x} \, dx}{e^4 \left (5-e^4\right )}+\frac {\left (10 \left (2-e^4-e^8+\log (4)\right )\right ) \int \frac {\log \left (1+\frac {x}{e^4}\right )}{x} \, dx}{e^4 \left (5-e^4\right )}\\ &=-\left ((5+x) \log ^2\left (1+\frac {5}{x}\right )\right )+\frac {40 \left (2-e^4-e^8+\log (4)\right ) \log (x)}{e^4 \left (5-e^4\right )}+\frac {2 (28-\log (4)) \log (5) \log (x)}{5-e^4}+\frac {2 (28-\log (4)) \log \left (1+\frac {5}{x}\right ) \log (5+x)}{5-e^4}-\frac {(28-\log (4)) \log ^2(5+x)}{5-e^4}+\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (1+\frac {5}{x}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (\frac {5+x}{5-e^4}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-10 \text {Li}_2\left (-\frac {5}{x}\right )-\frac {2 (28-\log (4)) \text {Li}_2\left (-\frac {x}{5}\right )}{5-e^4}-\frac {10 \left (2-e^4-e^8+\log (4)\right ) \text {Li}_2\left (-\frac {x}{e^4}\right )}{e^4 \left (5-e^4\right )}-\frac {2 (2+\log (4)) \text {Li}_2\left (1-\frac {5+x}{x}\right )}{e^4}+\left (-2+e^4+e^8-\log (4)\right ) \int \frac {\log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2} \, dx+\frac {\left (10 \left (2-e^4-e^8+\log (4)\right )\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{5-e^4}\right )}{x} \, dx,x,e^4+x\right )}{e^4 \left (5-e^4\right )}\\ &=-\left ((5+x) \log ^2\left (1+\frac {5}{x}\right )\right )+\frac {40 \left (2-e^4-e^8+\log (4)\right ) \log (x)}{e^4 \left (5-e^4\right )}+\frac {2 (28-\log (4)) \log (5) \log (x)}{5-e^4}+\frac {2 (28-\log (4)) \log \left (1+\frac {5}{x}\right ) \log (5+x)}{5-e^4}-\frac {(28-\log (4)) \log ^2(5+x)}{5-e^4}+\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (1+\frac {5}{x}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-\frac {10 \left (2-e^4-e^8+\log (4)\right ) \log \left (\frac {5+x}{5-e^4}\right ) \log \left (e^4+x\right )}{e^4 \left (5-e^4\right )}-10 \text {Li}_2\left (-\frac {5}{x}\right )-\frac {2 (28-\log (4)) \text {Li}_2\left (-\frac {x}{5}\right )}{5-e^4}-\frac {10 \left (2-e^4-e^8+\log (4)\right ) \text {Li}_2\left (-\frac {x}{e^4}\right )}{e^4 \left (5-e^4\right )}-\frac {10 \left (2-e^4-e^8+\log (4)\right ) \text {Li}_2\left (-\frac {e^4+x}{5-e^4}\right )}{e^4 \left (5-e^4\right )}-\frac {2 (2+\log (4)) \text {Li}_2\left (1-\frac {5+x}{x}\right )}{e^4}+\left (-2+e^4+e^8-\log (4)\right ) \int \frac {\log ^2\left (1+\frac {5}{x}\right )}{\left (e^4+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.07, size = 28, normalized size = 1.00 \begin {gather*} \frac {\left (2+x-x^2+\log (4)\right ) \log ^2\left (\frac {5+x}{x}\right )}{e^4+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 30, normalized size = 1.07 \begin {gather*} -\frac {{\left (x^{2} - x - 2 \, \log \relax (2) - 2\right )} \log \left (\frac {x + 5}{x}\right )^{2}}{x + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 142, normalized size = 5.07 \begin {gather*} \frac {\frac {2 \, {\left (x + 5\right )}^{2} \log \relax (2) \log \left (\frac {x + 5}{x}\right )^{2}}{x^{2}} - \frac {4 \, {\left (x + 5\right )} \log \relax (2) \log \left (\frac {x + 5}{x}\right )^{2}}{x} + 2 \, \log \relax (2) \log \left (\frac {x + 5}{x}\right )^{2} + \frac {2 \, {\left (x + 5\right )}^{2} \log \left (\frac {x + 5}{x}\right )^{2}}{x^{2}} + \frac {{\left (x + 5\right )} \log \left (\frac {x + 5}{x}\right )^{2}}{x} - 28 \, \log \left (\frac {x + 5}{x}\right )^{2}}{\frac {{\left (x + 5\right )}^{2} e^{4}}{x^{2}} - \frac {2 \, {\left (x + 5\right )} e^{4}}{x} + \frac {5 \, {\left (x + 5\right )}}{x} + e^{4} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 5.47, size = 53, normalized size = 1.89
method | result | size |
norman | \(\frac {x \ln \left (\frac {5+x}{x}\right )^{2}+\left (2+2 \ln \relax (2)\right ) \ln \left (\frac {5+x}{x}\right )^{2}-\ln \left (\frac {5+x}{x}\right )^{2} x^{2}}{x +{\mathrm e}^{4}}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 65, normalized size = 2.32 \begin {gather*} -\frac {{\left (x^{2} - x - 2 \, \log \relax (2) - 2\right )} \log \left (x + 5\right )^{2} - 2 \, {\left (x^{2} - x - 2 \, \log \relax (2) - 2\right )} \log \left (x + 5\right ) \log \relax (x) + {\left (x^{2} - x - 2 \, \log \relax (2) - 2\right )} \log \relax (x)^{2}}{x + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\left (10\,x+{\mathrm {e}}^4\,\left (2\,x^3+9\,x^2-5\,x\right )+2\,x^2+5\,x^3+x^4+2\,\ln \relax (2)\,\left (x^2+5\,x\right )\right )\,{\ln \left (\frac {x+5}{x}\right )}^2+\left (20\,x+{\mathrm {e}}^4\,\left (-10\,x^2+10\,x+20\right )+2\,\ln \relax (2)\,\left (10\,x+10\,{\mathrm {e}}^4\right )+10\,x^2-10\,x^3\right )\,\ln \left (\frac {x+5}{x}\right )}{{\mathrm {e}}^4\,\left (2\,x^3+10\,x^2\right )+{\mathrm {e}}^8\,\left (x^2+5\,x\right )+5\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 24, normalized size = 0.86 \begin {gather*} \frac {\left (- x^{2} + x + 2 \log {\relax (2 )} + 2\right ) \log {\left (\frac {x + 5}{x} \right )}^{2}}{x + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________