Optimal. Leaf size=32 \[ \frac {6+\frac {1}{3} e^x \log \left (\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )\right )}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 1.51, antiderivative size = 35, normalized size of antiderivative = 1.09, number of steps used = 5, number of rules used = 4, integrand size = 113, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {12, 6688, 6742, 2288} \begin {gather*} \frac {3}{x}+\frac {e^x \log \left (\log \left (-\frac {x \log \left (\frac {x}{2}\right )}{4-\log (2)}\right )\right )}{6 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{6} \int \frac {e^x+e^x \log \left (\frac {x}{2}\right )-18 \log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )+e^x (-1+x) \log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right ) \log \left (\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )\right )}{x^2 \log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )} \, dx\\ &=\frac {1}{6} \int \frac {e^x+\log \left (\frac {x}{2}\right ) \left (e^x+\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right ) \left (-18+e^x (-1+x) \log \left (\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )\right )\right )\right )}{x^2 \log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )} \, dx\\ &=\frac {1}{6} \int \left (-\frac {18}{x^2}+\frac {e^x \left (1+\log \left (\frac {x}{2}\right )-\log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right ) \log \left (\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )\right )+x \log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right ) \log \left (\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )\right )\right )}{x^2 \log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )}\right ) \, dx\\ &=\frac {3}{x}+\frac {1}{6} \int \frac {e^x \left (1+\log \left (\frac {x}{2}\right )-\log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right ) \log \left (\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )\right )+x \log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right ) \log \left (\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )\right )\right )}{x^2 \log \left (\frac {x}{2}\right ) \log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )} \, dx\\ &=\frac {3}{x}+\frac {e^x \log \left (\log \left (-\frac {x \log \left (\frac {x}{2}\right )}{4-\log (2)}\right )\right )}{6 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 29, normalized size = 0.91 \begin {gather*} \frac {18+e^x \log \left (\log \left (\frac {x \log \left (\frac {x}{2}\right )}{-4+\log (2)}\right )\right )}{6 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 24, normalized size = 0.75 \begin {gather*} \frac {e^{x} \log \left (\log \left (\frac {x \log \left (\frac {1}{2} \, x\right )}{\log \relax (2) - 4}\right )\right ) + 18}{6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.01, size = 29, normalized size = 0.91 \begin {gather*} \frac {e^{x} \log \left (\log \relax (x) - \log \left (\log \relax (2) - 4\right ) + \log \left (-\log \relax (2) + \log \relax (x)\right )\right ) + 18}{6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (x -1\right ) {\mathrm e}^{x} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {x \ln \left (\frac {x}{2}\right )}{\ln \relax (2)-4}\right ) \ln \left (\ln \left (\frac {x \ln \left (\frac {x}{2}\right )}{\ln \relax (2)-4}\right )\right )-18 \ln \left (\frac {x}{2}\right ) \ln \left (\frac {x \ln \left (\frac {x}{2}\right )}{\ln \relax (2)-4}\right )+{\mathrm e}^{x} \ln \left (\frac {x}{2}\right )+{\mathrm e}^{x}}{6 x^{2} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {x \ln \left (\frac {x}{2}\right )}{\ln \relax (2)-4}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 32, normalized size = 1.00 \begin {gather*} \frac {e^{x} \log \left (\log \relax (x) - \log \left (\log \relax (2) - 4\right ) + \log \left (-\log \relax (2) + \log \relax (x)\right )\right )}{6 \, x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\frac {{\mathrm {e}}^x}{6}-3\,\ln \left (\frac {x}{2}\right )\,\ln \left (\frac {x\,\ln \left (\frac {x}{2}\right )}{\ln \relax (2)-4}\right )+\frac {\ln \left (\frac {x}{2}\right )\,{\mathrm {e}}^x}{6}+\frac {\ln \left (\ln \left (\frac {x\,\ln \left (\frac {x}{2}\right )}{\ln \relax (2)-4}\right )\right )\,\ln \left (\frac {x}{2}\right )\,{\mathrm {e}}^x\,\ln \left (\frac {x\,\ln \left (\frac {x}{2}\right )}{\ln \relax (2)-4}\right )\,\left (x-1\right )}{6}}{x^2\,\ln \left (\frac {x}{2}\right )\,\ln \left (\frac {x\,\ln \left (\frac {x}{2}\right )}{\ln \relax (2)-4}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 24, normalized size = 0.75 \begin {gather*} \frac {e^{x} \log {\left (\log {\left (\frac {x \log {\left (\frac {x}{2} \right )}}{-4 + \log {\relax (2 )}} \right )} \right )}}{6 x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________