Optimal. Leaf size=20 \[ \left (2+\frac {1}{x}\right ) \left (x+e^{\frac {5 x}{2+x}} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8+8 x+2 x^2+e^{\frac {5 x}{2+x}} \left (18+28 x+2 x^2\right )}{4+4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8+8 x+2 x^2+e^{\frac {5 x}{2+x}} \left (18+28 x+2 x^2\right )}{(2+x)^2} \, dx\\ &=\int \left (2+\frac {2 e^{\frac {5 x}{2+x}} \left (9+14 x+x^2\right )}{(2+x)^2}\right ) \, dx\\ &=2 x+2 \int \frac {e^{\frac {5 x}{2+x}} \left (9+14 x+x^2\right )}{(2+x)^2} \, dx\\ &=2 x+2 \int \left (e^{\frac {5 x}{2+x}}-\frac {15 e^{\frac {5 x}{2+x}}}{(2+x)^2}+\frac {10 e^{\frac {5 x}{2+x}}}{2+x}\right ) \, dx\\ &=2 x+2 \int e^{\frac {5 x}{2+x}} \, dx+20 \int \frac {e^{\frac {5 x}{2+x}}}{2+x} \, dx-30 \int \frac {e^{\frac {5 x}{2+x}}}{(2+x)^2} \, dx\\ &=2 x+2 \int e^{\frac {5 x}{2+x}} \, dx+20 \int \frac {e^{5-\frac {10}{2+x}}}{2+x} \, dx-30 \int \frac {e^{5-\frac {10}{2+x}}}{(2+x)^2} \, dx\\ &=-3 e^{5-\frac {10}{2+x}}+2 x-20 e^5 \text {Ei}\left (-\frac {10}{2+x}\right )+2 \int e^{\frac {5 x}{2+x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 28, normalized size = 1.40 \begin {gather*} 2 x+\frac {1}{5} e^{-5 \left (-1+\frac {2}{2+x}\right )} (-15+10 (2+x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.06, size = 19, normalized size = 0.95 \begin {gather*} {\left (2 \, x + 1\right )} e^{\left (\frac {5 \, x}{x + 2}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 25, normalized size = 1.25 \begin {gather*} 2 \, x e^{\left (\frac {5 \, x}{x + 2}\right )} + 2 \, x + e^{\left (\frac {5 \, x}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 20, normalized size = 1.00
method | result | size |
risch | \(2 x +\left (2 x +1\right ) {\mathrm e}^{\frac {5 x}{2+x}}\) | \(20\) |
derivativedivides | \(2 \,{\mathrm e}^{5-\frac {10}{2+x}} \left (2+x \right )+4+2 x -3 \,{\mathrm e}^{5-\frac {10}{2+x}}\) | \(33\) |
default | \(2 \,{\mathrm e}^{5-\frac {10}{2+x}} \left (2+x \right )+4+2 x -3 \,{\mathrm e}^{5-\frac {10}{2+x}}\) | \(33\) |
norman | \(\frac {2 x^{2}+5 \,{\mathrm e}^{\frac {5 x}{2+x}} x +2 \,{\mathrm e}^{\frac {5 x}{2+x}} x^{2}+2 \,{\mathrm e}^{\frac {5 x}{2+x}}-8}{2+x}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, x e^{\left (-\frac {10}{x + 2} + 5\right )} + 2 \, x + \frac {9}{5} \, e^{\left (-\frac {10}{x + 2} + 5\right )} - 8 \, \int \frac {e^{\left (-\frac {10}{x + 2} + 5\right )}}{x^{2} + 4 \, x + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 25, normalized size = 1.25 \begin {gather*} {\mathrm {e}}^{\frac {5\,x}{x+2}}+x\,\left (2\,{\mathrm {e}}^{\frac {5\,x}{x+2}}+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.75 \begin {gather*} 2 x + \left (2 x + 1\right ) e^{\frac {5 x}{x + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________