Optimal. Leaf size=34 \[ 1+\frac {4+x}{2 (-4+x)+\frac {x}{\left (5+3 x^2 \left (e^x+x\right )\right ) \log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 137.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20+5 x+12 x^3+3 x^4+e^x \left (12 x^2+3 x^3\right )+\left (-20+24 x^3+9 x^4+e^x \left (12 x^2+18 x^3+3 x^4\right )\right ) \log (x)+\left (-400-480 x^3-144 e^{2 x} x^4-144 x^6+e^x \left (-480 x^2-288 x^5\right )\right ) \log ^2(x)}{x^2+\left (-80 x+20 x^2-48 x^4+12 x^5+e^x \left (-48 x^3+12 x^4\right )\right ) \log (x)+\left (1600-800 x+100 x^2+1920 x^3-960 x^4+120 x^5+576 x^6-288 x^7+36 x^8+e^{2 x} \left (576 x^4-288 x^5+36 x^6\right )+e^x \left (1920 x^2-960 x^3+120 x^4+1152 x^5-576 x^6+72 x^7\right )\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(4+x) \left (5+3 e^x x^2+3 x^3\right )+\left (-20+24 x^3+9 x^4+3 e^x x^2 \left (4+6 x+x^2\right )\right ) \log (x)-16 \left (5+3 e^x x^2+3 x^3\right )^2 \log ^2(x)}{\left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )^2} \, dx\\ &=\int \left (-\frac {4}{(-4+x)^2}+\frac {-16+x^2-16 \log (x)-4 x \log (x)+2 x^2 \log (x)+x^3 \log (x)}{2 (-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )}-\frac {(4+x) \left (-4 x+x^2-4 x \log (x)-2 x^2 \log (x)+x^3 \log (x)+320 \log ^2(x)-60 x^2 \log ^2(x)-86 x^3 \log ^2(x)+144 x^4 \log ^2(x)-54 x^5 \log ^2(x)+6 x^6 \log ^2(x)\right )}{2 (-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )^2}\right ) \, dx\\ &=-\frac {4}{4-x}+\frac {1}{2} \int \frac {-16+x^2-16 \log (x)-4 x \log (x)+2 x^2 \log (x)+x^3 \log (x)}{(-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )} \, dx-\frac {1}{2} \int \frac {(4+x) \left (-4 x+x^2-4 x \log (x)-2 x^2 \log (x)+x^3 \log (x)+320 \log ^2(x)-60 x^2 \log ^2(x)-86 x^3 \log ^2(x)+144 x^4 \log ^2(x)-54 x^5 \log ^2(x)+6 x^6 \log ^2(x)\right )}{(-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )^2} \, dx\\ &=-\frac {4}{4-x}+\frac {1}{2} \int \frac {-16+x^2+\left (-16-4 x+2 x^2+x^3\right ) \log (x)}{(4-x)^2 \log (x) \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )} \, dx-\frac {1}{2} \int \frac {(4+x) \left ((-4+x) x+x \left (-4-2 x+x^2\right ) \log (x)+2 (-4+x)^2 \left (10+5 x-3 x^3+3 x^4\right ) \log ^2(x)\right )}{(4-x)^2 \log (x) \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )^2} \, dx\\ &=-\frac {4}{4-x}+\frac {1}{2} \int \left (-\frac {16}{(-4+x)^2 \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )}-\frac {4 x}{(-4+x)^2 \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )}+\frac {2 x^2}{(-4+x)^2 \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )}+\frac {x^3}{(-4+x)^2 \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )}-\frac {16}{(-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )}+\frac {x^2}{(-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )}\right ) \, dx-\frac {1}{2} \int \left (\frac {8 \left (-4 x+x^2-4 x \log (x)-2 x^2 \log (x)+x^3 \log (x)+320 \log ^2(x)-60 x^2 \log ^2(x)-86 x^3 \log ^2(x)+144 x^4 \log ^2(x)-54 x^5 \log ^2(x)+6 x^6 \log ^2(x)\right )}{(-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )^2}+\frac {-4 x+x^2-4 x \log (x)-2 x^2 \log (x)+x^3 \log (x)+320 \log ^2(x)-60 x^2 \log ^2(x)-86 x^3 \log ^2(x)+144 x^4 \log ^2(x)-54 x^5 \log ^2(x)+6 x^6 \log ^2(x)}{(-4+x) \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )^2}\right ) \, dx\\ &=-\frac {4}{4-x}+\frac {1}{2} \int \frac {x^3}{(-4+x)^2 \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )} \, dx+\frac {1}{2} \int \frac {x^2}{(-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )} \, dx-\frac {1}{2} \int \frac {-4 x+x^2-4 x \log (x)-2 x^2 \log (x)+x^3 \log (x)+320 \log ^2(x)-60 x^2 \log ^2(x)-86 x^3 \log ^2(x)+144 x^4 \log ^2(x)-54 x^5 \log ^2(x)+6 x^6 \log ^2(x)}{(-4+x) \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )^2} \, dx-2 \int \frac {x}{(-4+x)^2 \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )} \, dx-4 \int \frac {-4 x+x^2-4 x \log (x)-2 x^2 \log (x)+x^3 \log (x)+320 \log ^2(x)-60 x^2 \log ^2(x)-86 x^3 \log ^2(x)+144 x^4 \log ^2(x)-54 x^5 \log ^2(x)+6 x^6 \log ^2(x)}{(-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )^2} \, dx-8 \int \frac {1}{(-4+x)^2 \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )} \, dx-8 \int \frac {1}{(-4+x)^2 \log (x) \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )} \, dx+\int \frac {x^2}{(-4+x)^2 \left (x-40 \log (x)+10 x \log (x)-24 e^x x^2 \log (x)-24 x^3 \log (x)+6 e^x x^3 \log (x)+6 x^4 \log (x)\right )} \, dx\\ &=-\frac {4}{4-x}+\frac {1}{2} \int \frac {x^3}{(4-x)^2 \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )} \, dx+\frac {1}{2} \int \frac {x^2}{(4-x)^2 \log (x) \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )} \, dx-\frac {1}{2} \int \frac {-((-4+x) x)-x \left (-4-2 x+x^2\right ) \log (x)-2 (-4+x)^2 \left (10+5 x-3 x^3+3 x^4\right ) \log ^2(x)}{(4-x) \log (x) \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )^2} \, dx-2 \int \frac {x}{(4-x)^2 \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )} \, dx-4 \int \frac {(-4+x) x+x \left (-4-2 x+x^2\right ) \log (x)+2 (-4+x)^2 \left (10+5 x-3 x^3+3 x^4\right ) \log ^2(x)}{(4-x)^2 \log (x) \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )^2} \, dx-8 \int \frac {1}{(4-x)^2 \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )} \, dx-8 \int \frac {1}{(4-x)^2 \log (x) \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )} \, dx+\int \frac {x^2}{(4-x)^2 \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 51, normalized size = 1.50 \begin {gather*} -\frac {x-16 \left (5+3 e^x x^2+3 x^3\right ) \log (x)}{2 \left (x+2 (-4+x) \left (5+3 e^x x^2+3 x^3\right ) \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 60, normalized size = 1.76 \begin {gather*} \frac {16 \, {\left (3 \, x^{3} + 3 \, x^{2} e^{x} + 5\right )} \log \relax (x) - x}{2 \, {\left (2 \, {\left (3 \, x^{4} - 12 \, x^{3} + 3 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{x} + 5 \, x - 20\right )} \log \relax (x) + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.14, size = 71, normalized size = 2.09 \begin {gather*} \frac {48 \, x^{3} \log \relax (x) + 48 \, x^{2} e^{x} \log \relax (x) - x + 80 \, \log \relax (x)}{2 \, {\left (6 \, x^{4} \log \relax (x) + 6 \, x^{3} e^{x} \log \relax (x) - 24 \, x^{3} \log \relax (x) - 24 \, x^{2} e^{x} \log \relax (x) + 10 \, x \log \relax (x) + x - 40 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 65, normalized size = 1.91
method | result | size |
risch | \(\frac {4}{x -4}-\frac {\left (4+x \right ) x}{2 \left (x -4\right ) \left (6 x^{3} {\mathrm e}^{x} \ln \relax (x )+6 x^{4} \ln \relax (x )-24 x^{2} {\mathrm e}^{x} \ln \relax (x )-24 x^{3} \ln \relax (x )+10 x \ln \relax (x )-40 \ln \relax (x )+x \right )}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 64, normalized size = 1.88 \begin {gather*} \frac {48 \, x^{2} e^{x} \log \relax (x) + 16 \, {\left (3 \, x^{3} + 5\right )} \log \relax (x) - x}{2 \, {\left (6 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{x} \log \relax (x) + 2 \, {\left (3 \, x^{4} - 12 \, x^{3} + 5 \, x - 20\right )} \log \relax (x) + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {5\,x+{\mathrm {e}}^x\,\left (3\,x^3+12\,x^2\right )+\ln \relax (x)\,\left ({\mathrm {e}}^x\,\left (3\,x^4+18\,x^3+12\,x^2\right )+24\,x^3+9\,x^4-20\right )+12\,x^3+3\,x^4-{\ln \relax (x)}^2\,\left ({\mathrm {e}}^x\,\left (288\,x^5+480\,x^2\right )+144\,x^4\,{\mathrm {e}}^{2\,x}+480\,x^3+144\,x^6+400\right )+20}{x^2-\ln \relax (x)\,\left (80\,x+{\mathrm {e}}^x\,\left (48\,x^3-12\,x^4\right )-20\,x^2+48\,x^4-12\,x^5\right )+{\ln \relax (x)}^2\,\left ({\mathrm {e}}^{2\,x}\,\left (36\,x^6-288\,x^5+576\,x^4\right )-800\,x+100\,x^2+1920\,x^3-960\,x^4+120\,x^5+576\,x^6-288\,x^7+36\,x^8+{\mathrm {e}}^x\,\left (72\,x^7-576\,x^6+1152\,x^5+120\,x^4-960\,x^3+1920\,x^2\right )+1600\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.10, size = 95, normalized size = 2.79 \begin {gather*} \frac {- x^{2} - 4 x}{12 x^{5} \log {\relax (x )} - 96 x^{4} \log {\relax (x )} + 192 x^{3} \log {\relax (x )} + 20 x^{2} \log {\relax (x )} + 2 x^{2} - 160 x \log {\relax (x )} - 8 x + \left (12 x^{4} \log {\relax (x )} - 96 x^{3} \log {\relax (x )} + 192 x^{2} \log {\relax (x )}\right ) e^{x} + 320 \log {\relax (x )}} + \frac {4}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________