Optimal. Leaf size=32 \[ \frac {4}{\left (-e^{\frac {2 \left (-x+3 \left (3+(-x+\log (\log (x)))^2\right )\right )}{x}}+x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 13.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x^2 \log (x)+\exp \left (\frac {2 \left (9-x+3 x^2-6 x \log (\log (x))+3 \log ^2(\log (x))\right )}{x}\right ) \left (96 x+\left (144-48 x^2\right ) \log (x)-96 \log (\log (x))+48 \log (x) \log ^2(\log (x))\right )}{\exp \left (\frac {6 \left (9-x+3 x^2-6 x \log (\log (x))+3 \log ^2(\log (x))\right )}{x}\right ) x^2 \log (x)-3 \exp \left (\frac {4 \left (9-x+3 x^2-6 x \log (\log (x))+3 \log ^2(\log (x))\right )}{x}\right ) x^3 \log (x)+3 \exp \left (\frac {2 \left (9-x+3 x^2-6 x \log (\log (x))+3 \log ^2(\log (x))\right )}{x}\right ) x^4 \log (x)-x^5 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^4 \log ^{23}(x) \left (e^2 x^2 \log ^{13}(x)+12 e^{\frac {6 \left (3+x^2+\log ^2(\log (x))\right )}{x}} (x-\log (\log (x)))-6 e^{\frac {6 \left (3+x^2+\log ^2(\log (x))\right )}{x}} \log (x) \left (-3+x^2-\log ^2(\log (x))\right )\right )}{x^2 \left (e^{\frac {6 \left (3+x^2+\log ^2(\log (x))\right )}{x}}-e^2 x \log ^{12}(x)\right )^3} \, dx\\ &=\left (8 e^4\right ) \int \frac {\log ^{23}(x) \left (e^2 x^2 \log ^{13}(x)+12 e^{\frac {6 \left (3+x^2+\log ^2(\log (x))\right )}{x}} (x-\log (\log (x)))-6 e^{\frac {6 \left (3+x^2+\log ^2(\log (x))\right )}{x}} \log (x) \left (-3+x^2-\log ^2(\log (x))\right )\right )}{x^2 \left (e^{\frac {6 \left (3+x^2+\log ^2(\log (x))\right )}{x}}-e^2 x \log ^{12}(x)\right )^3} \, dx\\ &=\left (8 e^4\right ) \int \left (\frac {e^2 \log ^{35}(x) \left (-12 x-18 \log (x)-x \log (x)+6 x^2 \log (x)+12 \log (\log (x))-6 \log (x) \log ^2(\log (x))\right )}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3}-\frac {6 \log ^{23}(x) \left (-2 x-3 \log (x)+x^2 \log (x)+2 \log (\log (x))-\log (x) \log ^2(\log (x))\right )}{x^2 \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2}\right ) \, dx\\ &=-\left (\left (48 e^4\right ) \int \frac {\log ^{23}(x) \left (-2 x-3 \log (x)+x^2 \log (x)+2 \log (\log (x))-\log (x) \log ^2(\log (x))\right )}{x^2 \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2} \, dx\right )+\left (8 e^6\right ) \int \frac {\log ^{35}(x) \left (-12 x-18 \log (x)-x \log (x)+6 x^2 \log (x)+12 \log (\log (x))-6 \log (x) \log ^2(\log (x))\right )}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3} \, dx\\ &=-\left (\left (48 e^4\right ) \int \left (-\frac {2 \log ^{23}(x)}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2}+\frac {\log ^{24}(x)}{\left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2}-\frac {3 \log ^{24}(x)}{x^2 \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2}+\frac {2 \log ^{23}(x) \log (\log (x))}{x^2 \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2}-\frac {\log ^{24}(x) \log ^2(\log (x))}{x^2 \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2}\right ) \, dx\right )+\left (8 e^6\right ) \int \left (-\frac {12 \log ^{35}(x)}{\left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3}-\frac {\log ^{36}(x)}{\left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3}-\frac {18 \log ^{36}(x)}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3}+\frac {6 x \log ^{36}(x)}{\left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3}+\frac {12 \log ^{35}(x) \log (\log (x))}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3}-\frac {6 \log ^{36}(x) \log ^2(\log (x))}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3}\right ) \, dx\\ &=-\left (\left (48 e^4\right ) \int \frac {\log ^{24}(x)}{\left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2} \, dx\right )+\left (48 e^4\right ) \int \frac {\log ^{24}(x) \log ^2(\log (x))}{x^2 \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2} \, dx+\left (96 e^4\right ) \int \frac {\log ^{23}(x)}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2} \, dx-\left (96 e^4\right ) \int \frac {\log ^{23}(x) \log (\log (x))}{x^2 \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2} \, dx+\left (144 e^4\right ) \int \frac {\log ^{24}(x)}{x^2 \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^2} \, dx-\left (8 e^6\right ) \int \frac {\log ^{36}(x)}{\left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3} \, dx+\left (48 e^6\right ) \int \frac {x \log ^{36}(x)}{\left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3} \, dx-\left (48 e^6\right ) \int \frac {\log ^{36}(x) \log ^2(\log (x))}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3} \, dx-\left (96 e^6\right ) \int \frac {\log ^{35}(x)}{\left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3} \, dx+\left (96 e^6\right ) \int \frac {\log ^{35}(x) \log (\log (x))}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3} \, dx-\left (144 e^6\right ) \int \frac {\log ^{36}(x)}{x \left (-e^{\frac {18}{x}+6 x+\frac {6 \log ^2(\log (x))}{x}}+e^2 x \log ^{12}(x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 39, normalized size = 1.22 \begin {gather*} \frac {4 e^4 \log ^{24}(x)}{\left (e^{\frac {6 \left (3+x^2+\log ^2(\log (x))\right )}{x}}-e^2 x \log ^{12}(x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.91, size = 69, normalized size = 2.16 \begin {gather*} \frac {4}{x^{2} - 2 \, x e^{\left (\frac {2 \, {\left (3 \, x^{2} - 6 \, x \log \left (\log \relax (x)\right ) + 3 \, \log \left (\log \relax (x)\right )^{2} - x + 9\right )}}{x}\right )} + e^{\left (\frac {4 \, {\left (3 \, x^{2} - 6 \, x \log \left (\log \relax (x)\right ) + 3 \, \log \left (\log \relax (x)\right )^{2} - x + 9\right )}}{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 36, normalized size = 1.12
method | result | size |
risch | \(\frac {4}{\left (-\frac {{\mathrm e}^{\frac {6 \ln \left (\ln \relax (x )\right )^{2}+6 x^{2}-2 x +18}{x}}}{\ln \relax (x )^{12}}+x \right )^{2}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 69, normalized size = 2.16 \begin {gather*} \frac {4 \, e^{4} \log \relax (x)^{24}}{x^{2} e^{4} \log \relax (x)^{24} - 2 \, x e^{\left (6 \, x + \frac {6 \, \log \left (\log \relax (x)\right )^{2}}{x} + \frac {18}{x} + 2\right )} \log \relax (x)^{12} + e^{\left (12 \, x + \frac {12 \, \log \left (\log \relax (x)\right )^{2}}{x} + \frac {36}{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.76, size = 66, normalized size = 2.06 \begin {gather*} \frac {4}{x^2+\frac {{\mathrm {e}}^{12\,x}\,{\mathrm {e}}^{\frac {12\,{\ln \left (\ln \relax (x)\right )}^2}{x}}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{36/x}}{{\ln \relax (x)}^{24}}-\frac {2\,x\,{\mathrm {e}}^{6\,x}\,{\mathrm {e}}^{\frac {6\,{\ln \left (\ln \relax (x)\right )}^2}{x}}\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^{18/x}}{{\ln \relax (x)}^{12}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.63, size = 68, normalized size = 2.12 \begin {gather*} \frac {4}{x^{2} - 2 x e^{\frac {2 \left (3 x^{2} - 6 x \log {\left (\log {\relax (x )} \right )} - x + 3 \log {\left (\log {\relax (x )} \right )}^{2} + 9\right )}{x}} + e^{\frac {4 \left (3 x^{2} - 6 x \log {\left (\log {\relax (x )} \right )} - x + 3 \log {\left (\log {\relax (x )} \right )}^{2} + 9\right )}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________