Optimal. Leaf size=22 \[ \log \left (-e^{-2+2^x x^{2+x}}+x+\log (3+x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4-x+2^x e^{-2+2^x x^{2+x}} x^x \left (6 x+5 x^2+x^3+\left (3 x^2+x^3\right ) \log (2 x)\right )}{-3 x-x^2+e^{-2+2^x x^{2+x}} (3+x)+(-3-x) \log (3+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 \left (-4-x+2^x e^{-2+2^x x^{2+x}} x^x \left (6 x+5 x^2+x^3+\left (3 x^2+x^3\right ) \log (2 x)\right )\right )}{(3+x) \left (e^{2^x x^{2+x}}-e^2 x-e^2 \log (3+x)\right )} \, dx\\ &=e^2 \int \frac {-4-x+2^x e^{-2+2^x x^{2+x}} x^x \left (6 x+5 x^2+x^3+\left (3 x^2+x^3\right ) \log (2 x)\right )}{(3+x) \left (e^{2^x x^{2+x}}-e^2 x-e^2 \log (3+x)\right )} \, dx\\ &=e^2 \int \left (\frac {2^x e^{-2+2^x x^{2+x}} x^{1+x} (2+x+x \log (2 x))}{e^{2^x x^{2+x}}-e^2 x-e^2 \log (3+x)}+\frac {4+x}{(3+x) \left (-e^{2^x x^{2+x}}+e^2 x+e^2 \log (3+x)\right )}\right ) \, dx\\ &=e^2 \int \frac {2^x e^{-2+2^x x^{2+x}} x^{1+x} (2+x+x \log (2 x))}{e^{2^x x^{2+x}}-e^2 x-e^2 \log (3+x)} \, dx+e^2 \int \frac {4+x}{(3+x) \left (-e^{2^x x^{2+x}}+e^2 x+e^2 \log (3+x)\right )} \, dx\\ &=e^2 \int \left (-\frac {1}{e^{2^x x^{2+x}}-e^2 x-e^2 \log (3+x)}+\frac {1}{(3+x) \left (-e^{2^x x^{2+x}}+e^2 x+e^2 \log (3+x)\right )}\right ) \, dx+e^2 \int \left (\frac {2^{1+x} e^{-2+2^x x^{2+x}} x^{1+x}}{e^{2^x x^{2+x}}-e^2 x-e^2 \log (3+x)}-\frac {2^x e^{-2+2^x x^{2+x}} x^{2+x}}{-e^{2^x x^{2+x}}+e^2 x+e^2 \log (3+x)}-\frac {2^x e^{-2+2^x x^{2+x}} x^{2+x} \log (2 x)}{-e^{2^x x^{2+x}}+e^2 x+e^2 \log (3+x)}\right ) \, dx\\ &=-\left (e^2 \int \frac {1}{e^{2^x x^{2+x}}-e^2 x-e^2 \log (3+x)} \, dx\right )+e^2 \int \frac {2^{1+x} e^{-2+2^x x^{2+x}} x^{1+x}}{e^{2^x x^{2+x}}-e^2 x-e^2 \log (3+x)} \, dx-e^2 \int \frac {2^x e^{-2+2^x x^{2+x}} x^{2+x}}{-e^{2^x x^{2+x}}+e^2 x+e^2 \log (3+x)} \, dx+e^2 \int \frac {1}{(3+x) \left (-e^{2^x x^{2+x}}+e^2 x+e^2 \log (3+x)\right )} \, dx-e^2 \int \frac {2^x e^{-2+2^x x^{2+x}} x^{2+x} \log (2 x)}{-e^{2^x x^{2+x}}+e^2 x+e^2 \log (3+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 3.50, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-4-x+2^x e^{-2+2^x x^{2+x}} x^x \left (6 x+5 x^2+x^3+\left (3 x^2+x^3\right ) \log (2 x)\right )}{-3 x-x^2+e^{-2+2^x x^{2+x}} (3+x)+(-3-x) \log (3+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 23, normalized size = 1.05 \begin {gather*} \log \left (-x + e^{\left (\left (2 \, x\right )^{x} x^{2} - 2\right )} - \log \left (x + 3\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.07, size = 73, normalized size = 3.32 \begin {gather*} -\left (2 \, x\right )^{x} x^{3} \log \left (2 \, x\right ) - 2 \, \left (2 \, x\right )^{x} x^{2} \log \left (2 \, x\right ) + \left (2 \, x\right )^{x} x^{2} + \log \left (-2 \, x e^{2} + 2 \, e^{2} \log \relax (2) - 2 \, e^{2} \log \left (2 \, x + 6\right ) + 2 \, e^{\left (\left (2 \, x\right )^{x} x^{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 1.18
method | result | size |
risch | \(2+\ln \left (-x +{\mathrm e}^{x^{2} \left (2 x \right )^{x}-2}-\ln \left (3+x \right )\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 30, normalized size = 1.36 \begin {gather*} \log \left (-x e^{2} - e^{2} \log \left (x + 3\right ) + e^{\left (x^{2} e^{\left (x \log \relax (2) + x \log \relax (x)\right )}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.23, size = 21, normalized size = 0.95 \begin {gather*} \ln \left (x+\ln \left (x+3\right )-{\mathrm {e}}^{2^x\,x^{x+2}-2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.56, size = 22, normalized size = 1.00 \begin {gather*} \log {\left (- x + e^{x^{2} e^{x \log {\left (2 x \right )}} - 2} - \log {\left (x + 3 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________