Optimal. Leaf size=27 \[ 3+x+\left (2+e^{20}+x-\frac {5}{-e^4+e^{x^2}+x}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 5.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-50+e^{12} (-5-2 x)+20 x+5 x^3+2 x^4+e^{3 x^2} \left (5+2 e^{20}+2 x\right )+e^8 \left (-10+15 x+6 x^2\right )+e^4 \left (-20+10 x-15 x^2-6 x^3\right )+e^{2 x^2} \left (-10+e^4 (-15-6 x)+55 x+26 x^2+e^{20} \left (-6 e^4+26 x\right )\right )+e^{20} \left (-2 e^{12}+10 x+6 e^8 x+2 x^3+e^4 \left (-10-6 x^2\right )\right )+e^{x^2} \left (20-110 x+55 x^2+26 x^3+e^8 (15+6 x)+e^4 \left (20-70 x-32 x^2\right )+e^{20} \left (10+6 e^8-32 e^4 x+26 x^2\right )\right )}{-e^{12}+e^{3 x^2}+3 e^8 x-3 e^4 x^2+x^3+e^{2 x^2} \left (-3 e^4+3 x\right )+e^{x^2} \left (3 e^8-6 e^4 x+3 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50-e^{12} (-5-2 x)-20 x-5 x^3-2 x^4-e^{3 x^2} \left (5+2 e^{20}+2 x\right )-e^8 \left (-10+15 x+6 x^2\right )-e^4 \left (-20+10 x-15 x^2-6 x^3\right )-e^{2 x^2} \left (-10+e^4 (-15-6 x)+55 x+26 x^2+e^{20} \left (-6 e^4+26 x\right )\right )-e^{20} \left (-2 e^{12}+10 x+6 e^8 x+2 x^3+e^4 \left (-10-6 x^2\right )\right )-e^{x^2} \left (20-110 x+55 x^2+26 x^3+e^8 (15+6 x)+e^4 \left (20-70 x-32 x^2\right )+e^{20} \left (10+6 e^8-32 e^4 x+26 x^2\right )\right )}{\left (e^4-e^{x^2}-x\right )^3} \, dx\\ &=\int \left (5 \left (1+\frac {2 e^{20}}{5}\right )+2 x-\frac {50 \left (1+2 e^4 x-2 x^2\right )}{\left (-e^4+e^{x^2}+x\right )^3}+\frac {10 \left (1-2 \left (2+e^{20}\right ) x-2 x^2\right )}{e^4-e^{x^2}-x}+\frac {10 \left (2+e^{20}-\left (9-4 e^4-2 e^{24}\right ) x-2 \left (2-e^4+e^{20}\right ) x^2-2 x^3\right )}{\left (e^4-e^{x^2}-x\right )^2}\right ) \, dx\\ &=\left (5+2 e^{20}\right ) x+x^2+10 \int \frac {1-2 \left (2+e^{20}\right ) x-2 x^2}{e^4-e^{x^2}-x} \, dx+10 \int \frac {2+e^{20}-\left (9-4 e^4-2 e^{24}\right ) x-2 \left (2-e^4+e^{20}\right ) x^2-2 x^3}{\left (e^4-e^{x^2}-x\right )^2} \, dx-50 \int \frac {1+2 e^4 x-2 x^2}{\left (-e^4+e^{x^2}+x\right )^3} \, dx\\ &=\left (5+2 e^{20}\right ) x+x^2+10 \int \left (\frac {\left (1+\frac {2}{e^{20}}\right ) e^{20}}{\left (e^4-e^{x^2}-x\right )^2}-\frac {2 \left (2-e^4+e^{20}\right ) x^2}{\left (e^4-e^{x^2}-x\right )^2}+\frac {\left (-9+4 e^4+2 e^{24}\right ) x}{\left (-e^4+e^{x^2}+x\right )^2}-\frac {2 x^3}{\left (-e^4+e^{x^2}+x\right )^2}\right ) \, dx+10 \int \left (-\frac {2 \left (2+e^{20}\right ) x}{e^4-e^{x^2}-x}-\frac {1}{-e^4+e^{x^2}+x}+\frac {2 x^2}{-e^4+e^{x^2}+x}\right ) \, dx-50 \int \left (-\frac {2 e^4 x}{\left (e^4-e^{x^2}-x\right )^3}+\frac {1}{\left (-e^4+e^{x^2}+x\right )^3}-\frac {2 x^2}{\left (-e^4+e^{x^2}+x\right )^3}\right ) \, dx\\ &=\left (5+2 e^{20}\right ) x+x^2-10 \int \frac {1}{-e^4+e^{x^2}+x} \, dx-20 \int \frac {x^3}{\left (-e^4+e^{x^2}+x\right )^2} \, dx+20 \int \frac {x^2}{-e^4+e^{x^2}+x} \, dx-50 \int \frac {1}{\left (-e^4+e^{x^2}+x\right )^3} \, dx+100 \int \frac {x^2}{\left (-e^4+e^{x^2}+x\right )^3} \, dx+\left (100 e^4\right ) \int \frac {x}{\left (e^4-e^{x^2}-x\right )^3} \, dx+\left (10 \left (2+e^{20}\right )\right ) \int \frac {1}{\left (e^4-e^{x^2}-x\right )^2} \, dx-\left (20 \left (2+e^{20}\right )\right ) \int \frac {x}{e^4-e^{x^2}-x} \, dx-\left (20 \left (2-e^4+e^{20}\right )\right ) \int \frac {x^2}{\left (e^4-e^{x^2}-x\right )^2} \, dx-\left (10 \left (9-4 e^4-2 e^{24}\right )\right ) \int \frac {x}{\left (-e^4+e^{x^2}+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 51, normalized size = 1.89 \begin {gather*} \left (5+2 e^{20}\right ) x+x^2+\frac {25}{\left (-e^4+e^{x^2}+x\right )^2}-\frac {10 \left (2+e^{20}+x\right )}{-e^4+e^{x^2}+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 168, normalized size = 6.22 \begin {gather*} \frac {x^{4} + 5 \, x^{3} - 10 \, x^{2} + 2 \, x e^{28} - 2 \, {\left (2 \, x^{2} - 5\right )} e^{24} + 2 \, {\left (x^{3} - 5 \, x\right )} e^{20} + {\left (x^{2} + 5 \, x\right )} e^{8} - 2 \, {\left (x^{3} + 5 \, x^{2} - 5 \, x - 10\right )} e^{4} + {\left (x^{2} + 2 \, x e^{20} + 5 \, x\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{3} + 5 \, x^{2} - 2 \, x e^{24} + {\left (2 \, x^{2} - 5\right )} e^{20} - {\left (x^{2} + 5 \, x\right )} e^{4} - 5 \, x - 10\right )} e^{\left (x^{2}\right )} - 20 \, x + 25}{x^{2} - 2 \, x e^{4} + 2 \, {\left (x - e^{4}\right )} e^{\left (x^{2}\right )} + e^{8} + e^{\left (2 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.51, size = 224, normalized size = 8.30 \begin {gather*} \frac {x^{4} + 2 \, x^{3} e^{20} - 2 \, x^{3} e^{4} + 2 \, x^{3} e^{\left (x^{2}\right )} + 5 \, x^{3} - 4 \, x^{2} e^{24} + x^{2} e^{8} - 10 \, x^{2} e^{4} + x^{2} e^{\left (2 \, x^{2}\right )} + 4 \, x^{2} e^{\left (x^{2} + 20\right )} - 2 \, x^{2} e^{\left (x^{2} + 4\right )} + 10 \, x^{2} e^{\left (x^{2}\right )} - 10 \, x^{2} + 2 \, x e^{28} - 10 \, x e^{20} + 5 \, x e^{8} + 10 \, x e^{4} + 5 \, x e^{\left (2 \, x^{2}\right )} + 2 \, x e^{\left (2 \, x^{2} + 20\right )} - 4 \, x e^{\left (x^{2} + 24\right )} - 10 \, x e^{\left (x^{2} + 4\right )} - 10 \, x e^{\left (x^{2}\right )} - 20 \, x + 10 \, e^{24} + 20 \, e^{4} - 10 \, e^{\left (x^{2} + 20\right )} - 20 \, e^{\left (x^{2}\right )} + 25}{x^{2} - 2 \, x e^{4} + 2 \, x e^{\left (x^{2}\right )} + e^{8} + e^{\left (2 \, x^{2}\right )} - 2 \, e^{\left (x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.53, size = 78, normalized size = 2.89
method | result | size |
risch | \(2 x \,{\mathrm e}^{20}+x^{2}+5 x +\frac {10 \,{\mathrm e}^{24}-10 x \,{\mathrm e}^{20}-10 \,{\mathrm e}^{x^{2}+20}+10 x \,{\mathrm e}^{4}-10 x^{2}-10 \,{\mathrm e}^{x^{2}} x +20 \,{\mathrm e}^{4}-20 x -20 \,{\mathrm e}^{x^{2}}+25}{\left ({\mathrm e}^{4}-{\mathrm e}^{x^{2}}-x \right )^{2}}\) | \(78\) |
norman | \(\frac {x^{4}+x^{2} {\mathrm e}^{2 x^{2}}+\left (5-2 \,{\mathrm e}^{4}+2 \,{\mathrm e}^{20}\right ) x^{3}+\left (-{\mathrm e}^{8}+4 \,{\mathrm e}^{20} {\mathrm e}^{4}+10 \,{\mathrm e}^{4}+10\right ) {\mathrm e}^{2 x^{2}}+\left (2 \,{\mathrm e}^{12}-6 \,{\mathrm e}^{20} {\mathrm e}^{8}-15 \,{\mathrm e}^{8}-10 \,{\mathrm e}^{4}-10 \,{\mathrm e}^{20}-20\right ) x +\left (2 \,{\mathrm e}^{12}-8 \,{\mathrm e}^{20} {\mathrm e}^{8}-20 \,{\mathrm e}^{8}-20 \,{\mathrm e}^{4}-10 \,{\mathrm e}^{20}-20\right ) {\mathrm e}^{x^{2}}+\left (2 \,{\mathrm e}^{20}+5\right ) x \,{\mathrm e}^{2 x^{2}}+\left (-2 \,{\mathrm e}^{4}+10+4 \,{\mathrm e}^{20}\right ) x^{2} {\mathrm e}^{x^{2}}+\left (-2 \,{\mathrm e}^{8}+4 \,{\mathrm e}^{20} {\mathrm e}^{4}+10 \,{\mathrm e}^{4}+10\right ) x \,{\mathrm e}^{x^{2}}+2 x^{3} {\mathrm e}^{x^{2}}+25-{\mathrm e}^{16}+4 \,{\mathrm e}^{12} {\mathrm e}^{20}+10 \,{\mathrm e}^{12}+10 \,{\mathrm e}^{8}+10 \,{\mathrm e}^{20} {\mathrm e}^{4}+20 \,{\mathrm e}^{4}}{\left ({\mathrm e}^{4}-{\mathrm e}^{x^{2}}-x \right )^{2}}\) | \(238\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 159, normalized size = 5.89 \begin {gather*} \frac {x^{4} + x^{3} {\left (2 \, e^{20} - 2 \, e^{4} + 5\right )} - x^{2} {\left (4 \, e^{24} - e^{8} + 10 \, e^{4} + 10\right )} + x {\left (2 \, e^{28} - 10 \, e^{20} + 5 \, e^{8} + 10 \, e^{4} - 20\right )} + {\left (x^{2} + x {\left (2 \, e^{20} + 5\right )}\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{3} + x^{2} {\left (2 \, e^{20} - e^{4} + 5\right )} - x {\left (2 \, e^{24} + 5 \, e^{4} + 5\right )} - 5 \, e^{20} - 10\right )} e^{\left (x^{2}\right )} + 10 \, e^{24} + 20 \, e^{4} + 25}{x^{2} - 2 \, x e^{4} + 2 \, {\left (x - e^{4}\right )} e^{\left (x^{2}\right )} + e^{8} + e^{\left (2 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {20\,x+{\mathrm {e}}^{2\,x^2}\,\left (55\,x+{\mathrm {e}}^{20}\,\left (26\,x-6\,{\mathrm {e}}^4\right )+26\,x^2-{\mathrm {e}}^4\,\left (6\,x+15\right )-10\right )+{\mathrm {e}}^8\,\left (6\,x^2+15\,x-10\right )-{\mathrm {e}}^4\,\left (6\,x^3+15\,x^2-10\,x+20\right )+{\mathrm {e}}^{20}\,\left (10\,x-2\,{\mathrm {e}}^{12}+6\,x\,{\mathrm {e}}^8-{\mathrm {e}}^4\,\left (6\,x^2+10\right )+2\,x^3\right )+{\mathrm {e}}^{x^2}\,\left ({\mathrm {e}}^{20}\,\left (26\,x^2-32\,{\mathrm {e}}^4\,x+6\,{\mathrm {e}}^8+10\right )-{\mathrm {e}}^4\,\left (32\,x^2+70\,x-20\right )-110\,x+55\,x^2+26\,x^3+{\mathrm {e}}^8\,\left (6\,x+15\right )+20\right )+5\,x^3+2\,x^4+{\mathrm {e}}^{3\,x^2}\,\left (2\,x+2\,{\mathrm {e}}^{20}+5\right )-{\mathrm {e}}^{12}\,\left (2\,x+5\right )-50}{{\mathrm {e}}^{3\,x^2}-{\mathrm {e}}^{12}+{\mathrm {e}}^{x^2}\,\left (3\,x^2-6\,{\mathrm {e}}^4\,x+3\,{\mathrm {e}}^8\right )+3\,x\,{\mathrm {e}}^8-3\,x^2\,{\mathrm {e}}^4+x^3+{\mathrm {e}}^{2\,x^2}\,\left (3\,x-3\,{\mathrm {e}}^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.30, size = 95, normalized size = 3.52 \begin {gather*} x^{2} + x \left (5 + 2 e^{20}\right ) + \frac {- 10 x^{2} - 10 x e^{20} - 20 x + 10 x e^{4} + \left (- 10 x - 10 e^{20} - 20\right ) e^{x^{2}} + 25 + 20 e^{4} + 10 e^{24}}{x^{2} - 2 x e^{4} + \left (2 x - 2 e^{4}\right ) e^{x^{2}} + e^{2 x^{2}} + e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________