Optimal. Leaf size=26 \[ i \pi +\log (4)+\frac {1}{-2+3 x-\log (x)-\frac {\log (x)}{x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 2.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+x^3-3 x^4-2 x \log (x)}{4 x^4-12 x^5+9 x^6+\left (4 x^2-6 x^3+4 x^4-6 x^5\right ) \log (x)+\left (1+2 x^2+x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x+x^3-3 x^4-2 x \log (x)}{\left (x^2 (-2+3 x)-\left (1+x^2\right ) \log (x)\right )^2} \, dx\\ &=\int \left (\frac {2 x}{\left (1+x^2\right ) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )}+\frac {x \left (1+6 x^2-9 x^3+x^4-3 x^5\right )}{\left (1+x^2\right ) \left (2 x^2-3 x^3+\log (x)+x^2 \log (x)\right )^2}\right ) \, dx\\ &=2 \int \frac {x}{\left (1+x^2\right ) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx+\int \frac {x \left (1+6 x^2-9 x^3+x^4-3 x^5\right )}{\left (1+x^2\right ) \left (2 x^2-3 x^3+\log (x)+x^2 \log (x)\right )^2} \, dx\\ &=2 \int \left (-\frac {1}{2 (i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )}+\frac {1}{2 (i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )}\right ) \, dx+\int \left (\frac {6}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}+\frac {5 x}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}-\frac {6 x^2}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}+\frac {x^3}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}-\frac {3 x^4}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}-\frac {2 (3+2 x)}{\left (1+x^2\right ) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {3+2 x}{\left (1+x^2\right ) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx\right )-3 \int \frac {x^4}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+5 \int \frac {x}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+6 \int \frac {1}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-6 \int \frac {x^2}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+\int \frac {x^3}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-\int \frac {1}{(i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx+\int \frac {1}{(i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx\\ &=-\left (2 \int \left (\frac {3}{\left (1+x^2\right ) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}+\frac {2 x}{\left (1+x^2\right ) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}\right ) \, dx\right )-3 \int \frac {x^4}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+5 \int \frac {x}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+6 \int \frac {1}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-6 \int \frac {x^2}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+\int \frac {x^3}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-\int \frac {1}{(i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx+\int \frac {1}{(i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx\\ &=-\left (3 \int \frac {x^4}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx\right )-4 \int \frac {x}{\left (1+x^2\right ) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+5 \int \frac {x}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+6 \int \frac {1}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-6 \int \frac {x^2}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-6 \int \frac {1}{\left (1+x^2\right ) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+\int \frac {x^3}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-\int \frac {1}{(i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx+\int \frac {1}{(i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx\\ &=-\left (3 \int \frac {x^4}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx\right )-4 \int \left (-\frac {1}{2 (i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}+\frac {1}{2 (i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}\right ) \, dx+5 \int \frac {x}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+6 \int \frac {1}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-6 \int \frac {x^2}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-6 \int \left (\frac {i}{2 (i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}+\frac {i}{2 (i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2}\right ) \, dx+\int \frac {x^3}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-\int \frac {1}{(i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx+\int \frac {1}{(i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx\\ &=-\left (3 i \int \frac {1}{(i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx\right )-3 i \int \frac {1}{(i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+2 \int \frac {1}{(i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-2 \int \frac {1}{(i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-3 \int \frac {x^4}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+5 \int \frac {x}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+6 \int \frac {1}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-6 \int \frac {x^2}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx+\int \frac {x^3}{\left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )^2} \, dx-\int \frac {1}{(i-x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx+\int \frac {1}{(i+x) \left (-2 x^2+3 x^3-\log (x)-x^2 \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 26, normalized size = 1.00 \begin {gather*} -\frac {x^2}{2 x^2-3 x^3+\log (x)+x^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^{2}}{3 \, x^{3} - 2 \, x^{2} - {\left (x^{2} + 1\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 28, normalized size = 1.08 \begin {gather*} \frac {x^{2}}{3 \, x^{3} - x^{2} \log \relax (x) - 2 \, x^{2} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 29, normalized size = 1.12
method | result | size |
norman | \(\frac {x^{2}}{3 x^{3}-x^{2} \ln \relax (x )-2 x^{2}-\ln \relax (x )}\) | \(29\) |
risch | \(\frac {x^{2}}{3 x^{3}-x^{2} \ln \relax (x )-2 x^{2}-\ln \relax (x )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^{2}}{3 \, x^{3} - 2 \, x^{2} - {\left (x^{2} + 1\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {x-2\,x\,\ln \relax (x)+x^3-3\,x^4}{{\ln \relax (x)}^2\,\left (x^4+2\,x^2+1\right )+\ln \relax (x)\,\left (-6\,x^5+4\,x^4-6\,x^3+4\,x^2\right )+4\,x^4-12\,x^5+9\,x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 22, normalized size = 0.85 \begin {gather*} - \frac {x^{2}}{- 3 x^{3} + 2 x^{2} + \left (x^{2} + 1\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________