Optimal. Leaf size=29 \[ \frac {3 x \left (x-\frac {e^2 x}{3}\right ) \left (x^2+\frac {\log (x)}{2}\right )}{e^2}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 36, normalized size of antiderivative = 1.24, number of steps used = 6, number of rules used = 3, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {12, 14, 2304} \begin {gather*} \frac {\left (3-e^2\right ) x^4}{e^2}+\frac {\left (3-e^2\right ) x^2 \log (x)}{2 e^2}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {3 x^2+24 x^4+e^2 \left (2-x^2-8 x^4\right )+\left (6 x^2-2 e^2 x^2\right ) \log (x)}{x} \, dx}{2 e^2}\\ &=\frac {\int \left (\frac {2 e^2+\left (3-e^2\right ) x^2+8 \left (3-e^2\right ) x^4}{x}-2 \left (-3+e^2\right ) x \log (x)\right ) \, dx}{2 e^2}\\ &=\frac {\int \frac {2 e^2+\left (3-e^2\right ) x^2+8 \left (3-e^2\right ) x^4}{x} \, dx}{2 e^2}+\frac {\left (3-e^2\right ) \int x \log (x) \, dx}{e^2}\\ &=-\frac {\left (3-e^2\right ) x^2}{4 e^2}+\frac {\left (3-e^2\right ) x^2 \log (x)}{2 e^2}+\frac {\int \left (\frac {2 e^2}{x}+\left (3-e^2\right ) x+8 \left (3-e^2\right ) x^3\right ) \, dx}{2 e^2}\\ &=\frac {\left (3-e^2\right ) x^4}{e^2}+\log (x)+\frac {\left (3-e^2\right ) x^2 \log (x)}{2 e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 35, normalized size = 1.21 \begin {gather*} -\frac {\left (-3+e^2\right ) x^4}{e^2}+\log (x)+\frac {\left (3-e^2\right ) x^2 \log (x)}{2 e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 36, normalized size = 1.24 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x^{4} e^{2} - 6 \, x^{4} - {\left (3 \, x^{2} - {\left (x^{2} - 2\right )} e^{2}\right )} \log \relax (x)\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 38, normalized size = 1.31 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x^{4} e^{2} - 6 \, x^{4} + x^{2} e^{2} \log \relax (x) - 3 \, x^{2} \log \relax (x) - 2 \, e^{2} \log \relax (x)\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.00
method | result | size |
risch | \(-\frac {\left ({\mathrm e}^{2}-3\right ) {\mathrm e}^{-2} x^{2} \ln \relax (x )}{2}-x^{4}+3 \,{\mathrm e}^{-2} x^{4}+\ln \relax (x )\) | \(29\) |
norman | \(\ln \relax (x )-\left ({\mathrm e}^{2}-3\right ) {\mathrm e}^{-2} x^{4}-\frac {\left ({\mathrm e}^{2}-3\right ) {\mathrm e}^{-2} x^{2} \ln \relax (x )}{2}\) | \(32\) |
default | \(\frac {{\mathrm e}^{-2} \left (-2 x^{4} {\mathrm e}^{2}-2 \,{\mathrm e}^{2} \left (\frac {x^{2} \ln \relax (x )}{2}-\frac {x^{2}}{4}\right )+6 x^{4}-\frac {x^{2} {\mathrm e}^{2}}{2}+3 x^{2} \ln \relax (x )+2 \,{\mathrm e}^{2} \ln \relax (x )\right )}{2}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 52, normalized size = 1.79 \begin {gather*} -\frac {1}{4} \, {\left (4 \, x^{4} e^{2} - 12 \, x^{4} + x^{2} e^{2} - 6 \, x^{2} \log \relax (x) + {\left (2 \, x^{2} \log \relax (x) - x^{2}\right )} e^{2} - 4 \, e^{2} \log \relax (x)\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.15, size = 26, normalized size = 0.90 \begin {gather*} \ln \relax (x)+x^4\,\left (3\,{\mathrm {e}}^{-2}-1\right )+\frac {x^2\,\ln \relax (x)\,\left (3\,{\mathrm {e}}^{-2}-1\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 37, normalized size = 1.28 \begin {gather*} \frac {\left (- x^{2} e^{2} + 3 x^{2}\right ) \log {\relax (x )}}{2 e^{2}} + \frac {x^{4} \left (3 - e^{2}\right ) + e^{2} \log {\relax (x )}}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________