Optimal. Leaf size=21 \[ -e^{\frac {(2-x)^2 x^2}{9 e^6}} \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 25, normalized size of antiderivative = 1.19, number of steps used = 3, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 1594, 6706} \begin {gather*} -e^{\frac {x^4-4 x^3+4 x^2}{9 e^6}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int e^{-6+\frac {4 x^2-4 x^3+x^4}{9 e^6}} \left (-8 x+12 x^2-4 x^3\right ) \, dx\\ &=\frac {1}{9} \int e^{-6+\frac {4 x^2-4 x^3+x^4}{9 e^6}} x \left (-8+12 x-4 x^2\right ) \, dx\\ &=-e^{\frac {4 x^2-4 x^3+x^4}{9 e^6}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 19, normalized size = 0.90 \begin {gather*} -e^{\frac {(-2+x)^2 x^2}{9 e^6}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 27, normalized size = 1.29 \begin {gather*} -e^{\left (\frac {1}{9} \, {\left (x^{4} - 4 \, x^{3} + 4 \, x^{2} - 54 \, e^{6}\right )} e^{\left (-6\right )} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 25, normalized size = 1.19 \begin {gather*} -e^{\left (\frac {1}{9} \, x^{4} e^{\left (-6\right )} - \frac {4}{9} \, x^{3} e^{\left (-6\right )} + \frac {4}{9} \, x^{2} e^{\left (-6\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 16, normalized size = 0.76
method | result | size |
risch | \(-{\mathrm e}^{\frac {x^{2} \left (x -2\right )^{2} {\mathrm e}^{-6}}{9}}\) | \(16\) |
gosper | \(-{\mathrm e}^{\frac {x^{2} \left (x^{2}-4 x +4\right ) {\mathrm e}^{-6}}{9}}\) | \(21\) |
norman | \(-{\mathrm e}^{\frac {\left (x^{4}-4 x^{3}+4 x^{2}\right ) {\mathrm e}^{-6}}{9}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 25, normalized size = 1.19 \begin {gather*} -e^{\left (\frac {1}{9} \, x^{4} e^{\left (-6\right )} - \frac {4}{9} \, x^{3} e^{\left (-6\right )} + \frac {4}{9} \, x^{2} e^{\left (-6\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 26, normalized size = 1.24 \begin {gather*} -{\mathrm {e}}^{\frac {x^4\,{\mathrm {e}}^{-6}}{9}}\,{\mathrm {e}}^{\frac {4\,x^2\,{\mathrm {e}}^{-6}}{9}}\,{\mathrm {e}}^{-\frac {4\,x^3\,{\mathrm {e}}^{-6}}{9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 1.14 \begin {gather*} - e^{\frac {\frac {x^{4}}{9} - \frac {4 x^{3}}{9} + \frac {4 x^{2}}{9}}{e^{6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________