Optimal. Leaf size=27 \[ 5-\frac {e^4}{x}+x+\frac {5}{9+\log \left (-x+4 x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.78, antiderivative size = 25, normalized size of antiderivative = 0.93, number of steps used = 6, number of rules used = 4, integrand size = 147, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {6688, 6742, 14, 6686} \begin {gather*} x-\frac {e^4}{x}+\frac {5}{\log (-((1-4 x) x))+9} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-81 e^4 (-1+4 x)-x \left (5-121 x+324 x^2\right )-18 (-1+4 x) \left (e^4+x^2\right ) \log (x (-1+4 x))-(-1+4 x) \left (e^4+x^2\right ) \log ^2(x (-1+4 x))}{(1-4 x) x^2 (9+\log (x (-1+4 x)))^2} \, dx\\ &=\int \left (\frac {e^4+x^2}{x^2}-\frac {5 (-1+8 x)}{x (-1+4 x) (9+\log (x (-1+4 x)))^2}\right ) \, dx\\ &=-\left (5 \int \frac {-1+8 x}{x (-1+4 x) (9+\log (x (-1+4 x)))^2} \, dx\right )+\int \frac {e^4+x^2}{x^2} \, dx\\ &=\frac {5}{9+\log (-((1-4 x) x))}+\int \left (1+\frac {e^4}{x^2}\right ) \, dx\\ &=-\frac {e^4}{x}+x+\frac {5}{9+\log (-((1-4 x) x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 0.89 \begin {gather*} -\frac {e^4}{x}+x+\frac {5}{9+\log (x (-1+4 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 51, normalized size = 1.89 \begin {gather*} \frac {9 \, x^{2} + {\left (x^{2} - e^{4}\right )} \log \left (4 \, x^{2} - x\right ) + 5 \, x - 9 \, e^{4}}{x \log \left (4 \, x^{2} - x\right ) + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 60, normalized size = 2.22 \begin {gather*} \frac {x^{2} \log \left (4 \, x^{2} - x\right ) + 9 \, x^{2} - e^{4} \log \left (4 \, x^{2} - x\right ) + 5 \, x - 9 \, e^{4}}{x \log \left (4 \, x^{2} - x\right ) + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 31, normalized size = 1.15
method | result | size |
risch | \(-\frac {{\mathrm e}^{4}-x^{2}}{x}+\frac {5}{\ln \left (4 x^{2}-x \right )+9}\) | \(31\) |
norman | \(\frac {5 x +\ln \left (4 x^{2}-x \right ) x^{2}+9 x^{2}-{\mathrm e}^{4} \ln \left (4 x^{2}-x \right )-9 \,{\mathrm e}^{4}}{x \left (\ln \left (4 x^{2}-x \right )+9\right )}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 58, normalized size = 2.15 \begin {gather*} \frac {9 \, x^{2} + {\left (x^{2} - e^{4}\right )} \log \left (4 \, x - 1\right ) + {\left (x^{2} - e^{4}\right )} \log \relax (x) + 5 \, x - 9 \, e^{4}}{x \log \left (4 \, x - 1\right ) + x \log \relax (x) + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.38, size = 25, normalized size = 0.93 \begin {gather*} x+\frac {5}{\ln \left (4\,x^2-x\right )+9}-\frac {{\mathrm {e}}^4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 17, normalized size = 0.63 \begin {gather*} x + \frac {5}{\log {\left (4 x^{2} - x \right )} + 9} - \frac {e^{4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________