Optimal. Leaf size=30 \[ 3 x^2 \log ^2(2-x-(1-x) (-3+2 \log (1-x))) \]
________________________________________________________________________________________
Rubi [F] time = 0.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-12 x^2+12 x^2 \log (1-x)\right ) \log (5-4 x+(-2+2 x) \log (1-x))+\left (30 x-24 x^2+\left (-12 x+12 x^2\right ) \log (1-x)\right ) \log ^2(5-4 x+(-2+2 x) \log (1-x))}{5-4 x+(-2+2 x) \log (1-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {12 x^2 (-1+\log (1-x)) \log (5-4 x+2 (-1+x) \log (1-x))}{5-4 x-2 \log (1-x)+2 x \log (1-x)}+6 x \log ^2(5-4 x+2 (-1+x) \log (1-x))\right ) \, dx\\ &=6 \int x \log ^2(5-4 x+2 (-1+x) \log (1-x)) \, dx+12 \int \frac {x^2 (-1+\log (1-x)) \log (5-4 x+2 (-1+x) \log (1-x))}{5-4 x-2 \log (1-x)+2 x \log (1-x)} \, dx\\ &=6 \int x \log ^2(5-4 x+2 (-1+x) \log (1-x)) \, dx+12 \int \left (-\frac {x^2 \log (5-4 x+2 (-1+x) \log (1-x))}{5-4 x-2 \log (1-x)+2 x \log (1-x)}+\frac {x^2 \log (1-x) \log (5-4 x+2 (-1+x) \log (1-x))}{5-4 x-2 \log (1-x)+2 x \log (1-x)}\right ) \, dx\\ &=6 \int x \log ^2(5-4 x+2 (-1+x) \log (1-x)) \, dx-12 \int \frac {x^2 \log (5-4 x+2 (-1+x) \log (1-x))}{5-4 x-2 \log (1-x)+2 x \log (1-x)} \, dx+12 \int \frac {x^2 \log (1-x) \log (5-4 x+2 (-1+x) \log (1-x))}{5-4 x-2 \log (1-x)+2 x \log (1-x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 24, normalized size = 0.80 \begin {gather*} 3 x^2 \log ^2(5-4 x+2 (-1+x) \log (1-x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 24, normalized size = 0.80 \begin {gather*} 3 \, x^{2} \log \left (2 \, {\left (x - 1\right )} \log \left (-x + 1\right ) - 4 \, x + 5\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 30, normalized size = 1.00 \begin {gather*} 3 \, x^{2} \log \left (2 \, x \log \left (-x + 1\right ) - 4 \, x - 2 \, \log \left (-x + 1\right ) + 5\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 0.87
method | result | size |
risch | \(3 x^{2} \ln \left (\left (2 x -2\right ) \ln \left (1-x \right )-4 x +5\right )^{2}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 29, normalized size = 0.97 \begin {gather*} 3 \, x^{2} \log \left (2 \, x {\left (\log \left (-x + 1\right ) - 2\right )} - 2 \, \log \left (-x + 1\right ) + 5\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.53, size = 25, normalized size = 0.83 \begin {gather*} 3\,x^2\,{\ln \left (\ln \left (1-x\right )\,\left (2\,x-2\right )-4\,x+5\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 22, normalized size = 0.73 \begin {gather*} 3 x^{2} \log {\left (- 4 x + \left (2 x - 2\right ) \log {\left (1 - x \right )} + 5 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________