Optimal. Leaf size=27 \[ \log (x)-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 1.47, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 30, number of rules used = 13, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.173, Rules used = {1593, 6688, 12, 14, 2178, 6742, 43, 2416, 2390, 2302, 29, 30, 2555} \begin {gather*} \log (x)-\frac {\log \left (\frac {4 e^{-e^x} \log (x-3)}{x}\right )}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 29
Rule 30
Rule 43
Rule 1593
Rule 2178
Rule 2302
Rule 2390
Rule 2416
Rule 2555
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x+\left (-3-5 x+2 x^2+e^x \left (-3 x+x^2\right )\right ) \log (-3+x)+(-3+x) \log (-3+x) \log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{x^2 (-6+2 x) \log (-3+x)} \, dx\\ &=\int \frac {1+\left (2+e^x\right ) x-\frac {x}{(-3+x) \log (-3+x)}+\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x^2} \, dx\\ &=\frac {1}{2} \int \frac {1+\left (2+e^x\right ) x-\frac {x}{(-3+x) \log (-3+x)}+\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^x}{x}+\frac {-x-3 \log (-3+x)-5 x \log (-3+x)+2 x^2 \log (-3+x)-3 \log (-3+x) \log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )+x \log (-3+x) \log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{(-3+x) x^2 \log (-3+x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^x}{x} \, dx+\frac {1}{2} \int \frac {-x-3 \log (-3+x)-5 x \log (-3+x)+2 x^2 \log (-3+x)-3 \log (-3+x) \log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )+x \log (-3+x) \log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{(-3+x) x^2 \log (-3+x)} \, dx\\ &=\frac {\text {Ei}(x)}{2}+\frac {1}{2} \int \frac {1+2 x-\frac {x}{(-3+x) \log (-3+x)}+\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{x^2} \, dx\\ &=\frac {\text {Ei}(x)}{2}+\frac {1}{2} \int \left (\frac {-x-3 \log (-3+x)-5 x \log (-3+x)+2 x^2 \log (-3+x)}{(-3+x) x^2 \log (-3+x)}+\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{x^2}\right ) \, dx\\ &=\frac {\text {Ei}(x)}{2}+\frac {1}{2} \int \frac {-x-3 \log (-3+x)-5 x \log (-3+x)+2 x^2 \log (-3+x)}{(-3+x) x^2 \log (-3+x)} \, dx+\frac {1}{2} \int \frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{x^2} \, dx\\ &=\frac {\text {Ei}(x)}{2}-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{2} \int \left (\frac {1+2 x}{x^2}-\frac {1}{(-3+x) x \log (-3+x)}\right ) \, dx-\frac {1}{2} \int \frac {1+e^x x-\frac {x}{(-3+x) \log (-3+x)}}{x^2} \, dx\\ &=\frac {\text {Ei}(x)}{2}-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{2} \int \frac {1+2 x}{x^2} \, dx-\frac {1}{2} \int \frac {1}{(-3+x) x \log (-3+x)} \, dx-\frac {1}{2} \int \left (\frac {e^x}{x}+\frac {-x-3 \log (-3+x)+x \log (-3+x)}{(-3+x) x^2 \log (-3+x)}\right ) \, dx\\ &=\frac {\text {Ei}(x)}{2}-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{2} \int \left (\frac {1}{x^2}+\frac {2}{x}\right ) \, dx-\frac {1}{2} \int \frac {e^x}{x} \, dx-\frac {1}{2} \int \left (\frac {1}{3 (-3+x) \log (-3+x)}-\frac {1}{3 x \log (-3+x)}\right ) \, dx-\frac {1}{2} \int \frac {-x-3 \log (-3+x)+x \log (-3+x)}{(-3+x) x^2 \log (-3+x)} \, dx\\ &=-\frac {1}{2 x}+\log (x)-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}-\frac {1}{6} \int \frac {1}{(-3+x) \log (-3+x)} \, dx+\frac {1}{6} \int \frac {1}{x \log (-3+x)} \, dx-\frac {1}{2} \int \frac {1-\frac {x}{(-3+x) \log (-3+x)}}{x^2} \, dx\\ &=-\frac {1}{2 x}+\log (x)-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{6} \int \frac {1}{x \log (-3+x)} \, dx-\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,-3+x\right )-\frac {1}{2} \int \left (\frac {1}{x^2}-\frac {1}{(-3+x) x \log (-3+x)}\right ) \, dx\\ &=\log (x)-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{6} \int \frac {1}{x \log (-3+x)} \, dx-\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (-3+x)\right )+\frac {1}{2} \int \frac {1}{(-3+x) x \log (-3+x)} \, dx\\ &=\log (x)-\frac {1}{6} \log (\log (-3+x))-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{6} \int \frac {1}{x \log (-3+x)} \, dx+\frac {1}{2} \int \left (\frac {1}{3 (-3+x) \log (-3+x)}-\frac {1}{3 x \log (-3+x)}\right ) \, dx\\ &=\log (x)-\frac {1}{6} \log (\log (-3+x))-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{6} \int \frac {1}{(-3+x) \log (-3+x)} \, dx\\ &=\log (x)-\frac {1}{6} \log (\log (-3+x))-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,-3+x\right )\\ &=\log (x)-\frac {1}{6} \log (\log (-3+x))-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}+\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (-3+x)\right )\\ &=\log (x)-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 31, normalized size = 1.15 \begin {gather*} \frac {1}{2} \left (2 \log (x)-\frac {\log \left (\frac {4 e^{-e^x} \log (-3+x)}{x}\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 28, normalized size = 1.04 \begin {gather*} \frac {2 \, x \log \relax (x) - \log \left (\frac {4 \, e^{\left (-e^{x}\right )} \log \left (x - 3\right )}{x}\right )}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 24, normalized size = 0.89 \begin {gather*} \frac {2 \, x \log \relax (x) + e^{x} + \log \relax (x) - \log \left (4 \, \log \left (x - 3\right )\right )}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.64, size = 271, normalized size = 10.04
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )}{2 x}+\frac {i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-{\mathrm e}^{x}} \ln \left (x -3\right )}{x}\right )^{3}+i \pi \,\mathrm {csgn}\left (i \ln \left (x -3\right ) {\mathrm e}^{-{\mathrm e}^{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-{\mathrm e}^{x}} \ln \left (x -3\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right )+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{x}}\right ) \mathrm {csgn}\left (i \ln \left (x -3\right )\right ) \mathrm {csgn}\left (i \ln \left (x -3\right ) {\mathrm e}^{-{\mathrm e}^{x}}\right )-i \pi \,\mathrm {csgn}\left (i \ln \left (x -3\right )\right ) \mathrm {csgn}\left (i \ln \left (x -3\right ) {\mathrm e}^{-{\mathrm e}^{x}}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \ln \left (x -3\right ) {\mathrm e}^{-{\mathrm e}^{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-{\mathrm e}^{x}} \ln \left (x -3\right )}{x}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-{\mathrm e}^{x}} \ln \left (x -3\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+i \pi \mathrm {csgn}\left (i \ln \left (x -3\right ) {\mathrm e}^{-{\mathrm e}^{x}}\right )^{3}-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{x}}\right ) \mathrm {csgn}\left (i \ln \left (x -3\right ) {\mathrm e}^{-{\mathrm e}^{x}}\right )^{2}+4 x \ln \relax (x )-4 \ln \relax (2)+2 \ln \relax (x )-2 \ln \left (\ln \left (x -3\right )\right )}{4 x}\) | \(271\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 52, normalized size = 1.93 \begin {gather*} \frac {x \log \left (x - 3\right ) + {\left (5 \, x + 3\right )} \log \relax (x) + 3 \, e^{x} - 6 \, \log \relax (2) - 3 \, \log \left (\log \left (x - 3\right )\right ) + 3}{6 \, x} - \frac {1}{2 \, x} - \frac {1}{6} \, \log \left (x - 3\right ) + \frac {1}{6} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 31, normalized size = 1.15 \begin {gather*} \ln \relax (x)+\frac {{\mathrm {e}}^x}{2\,x}-\frac {\ln \left (\frac {\ln \left (x-3\right )}{x}\right )}{2\,x}-\frac {\ln \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.58, size = 20, normalized size = 0.74 \begin {gather*} \log {\relax (x )} - \frac {\log {\left (\frac {4 e^{- e^{x}} \log {\left (x - 3 \right )}}{x} \right )}}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________