Optimal. Leaf size=17 \[ \log \left (\log \left (\log \left (x+\frac {x^2}{(-x+\log (x))^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x-x^3+\left (2 x+3 x^2\right ) \log (x)-3 x \log ^2(x)+\log ^3(x)}{\left (-x^3-x^4+\left (x^2+3 x^3\right ) \log (x)-3 x^2 \log ^2(x)+x \log ^3(x)\right ) \log \left (\frac {x^2+x^3-2 x^2 \log (x)+x \log ^2(x)}{x^2-2 x \log (x)+\log ^2(x)}\right ) \log \left (\log \left (\frac {x^2+x^3-2 x^2 \log (x)+x \log ^2(x)}{x^2-2 x \log (x)+\log ^2(x)}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x+x^3-\left (2 x+3 x^2\right ) \log (x)+3 x \log ^2(x)-\log ^3(x)}{\left (x^3+x^4-\left (x^2+3 x^3\right ) \log (x)+3 x^2 \log ^2(x)-x \log ^3(x)\right ) \log \left (\frac {x^2+x^3-2 x^2 \log (x)+x \log ^2(x)}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x^2+x^3-2 x^2 \log (x)+x \log ^2(x)}{(x-\log (x))^2}\right )\right )} \, dx\\ &=\int \left (\frac {2}{\left (x^2+x^3-x \log (x)-3 x^2 \log (x)+3 x \log ^2(x)-\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )}+\frac {x^2}{\left (x^2+x^3-x \log (x)-3 x^2 \log (x)+3 x \log ^2(x)-\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )}-\frac {3 x \log (x)}{\left (x^2+x^3-x \log (x)-3 x^2 \log (x)+3 x \log ^2(x)-\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )}-\frac {\log ^3(x)}{x \left (x^2+x^3-x \log (x)-3 x^2 \log (x)+3 x \log ^2(x)-\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )}+\frac {2 \log (x)}{\left (-x^2-x^3+x \log (x)+3 x^2 \log (x)-3 x \log ^2(x)+\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )}-\frac {3 \log ^2(x)}{\left (-x^2-x^3+x \log (x)+3 x^2 \log (x)-3 x \log ^2(x)+\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )}\right ) \, dx\\ &=2 \int \frac {1}{\left (x^2+x^3-x \log (x)-3 x^2 \log (x)+3 x \log ^2(x)-\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )} \, dx+2 \int \frac {\log (x)}{\left (-x^2-x^3+x \log (x)+3 x^2 \log (x)-3 x \log ^2(x)+\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )} \, dx-3 \int \frac {x \log (x)}{\left (x^2+x^3-x \log (x)-3 x^2 \log (x)+3 x \log ^2(x)-\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )} \, dx-3 \int \frac {\log ^2(x)}{\left (-x^2-x^3+x \log (x)+3 x^2 \log (x)-3 x \log ^2(x)+\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )} \, dx+\int \frac {x^2}{\left (x^2+x^3-x \log (x)-3 x^2 \log (x)+3 x \log ^2(x)-\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )} \, dx-\int \frac {\log ^3(x)}{x \left (x^2+x^3-x \log (x)-3 x^2 \log (x)+3 x \log ^2(x)-\log ^3(x)\right ) \log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right ) \log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 27, normalized size = 1.59 \begin {gather*} \log \left (\log \left (\log \left (\frac {x \left (x+x^2-2 x \log (x)+\log ^2(x)\right )}{(x-\log (x))^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 39, normalized size = 2.29 \begin {gather*} \log \left (\log \left (\log \left (\frac {x^{3} - 2 \, x^{2} \log \relax (x) + x \log \relax (x)^{2} + x^{2}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3} + 3 \, x \log \relax (x)^{2} - \log \relax (x)^{3} - {\left (3 \, x^{2} + 2 \, x\right )} \log \relax (x) + 2 \, x}{{\left (x^{4} + 3 \, x^{2} \log \relax (x)^{2} - x \log \relax (x)^{3} + x^{3} - {\left (3 \, x^{3} + x^{2}\right )} \log \relax (x)\right )} \log \left (\frac {x^{3} - 2 \, x^{2} \log \relax (x) + x \log \relax (x)^{2} + x^{2}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}}\right ) \log \left (\log \left (\frac {x^{3} - 2 \, x^{2} \log \relax (x) + x \log \relax (x)^{2} + x^{2}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}}\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.70, size = 333, normalized size = 19.59
method | result | size |
risch | \(\ln \left (\ln \left (\ln \relax (x )-2 \ln \left (x -\ln \relax (x )\right )+\ln \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )+\frac {i \pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )^{2}\right ) \left (-\mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )^{2}\right )-\mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )}{\left (\ln \relax (x )-x \right )^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )}{\left (\ln \relax (x )-x \right )^{2}}\right )+\mathrm {csgn}\left (\frac {i}{\left (\ln \relax (x )-x \right )^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )}{\left (\ln \relax (x )-x \right )^{2}}\right )+\mathrm {csgn}\left (i \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i x \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )}{\left (\ln \relax (x )-x \right )^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i x \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )}{\left (\ln \relax (x )-x \right )^{2}}\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (\frac {i x \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )}{\left (\ln \relax (x )-x \right )^{2}}\right )+\mathrm {csgn}\left (\frac {i \left (x^{2}+\left (-2 \ln \relax (x )+1\right ) x +\ln \relax (x )^{2}\right )}{\left (\ln \relax (x )-x \right )^{2}}\right )\right )}{2}\right )\right )\) | \(333\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 29, normalized size = 1.71 \begin {gather*} \log \left (\log \left (\log \left (x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2} + x\right ) + \log \relax (x) - 2 \, \log \left (-x + \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.70, size = 24, normalized size = 1.41 \begin {gather*} \ln \left (\ln \left (\ln \left (x+\frac {x^2}{x^2-2\,x\,\ln \relax (x)+{\ln \relax (x)}^2}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 6.17, size = 41, normalized size = 2.41 \begin {gather*} \log {\left (\log {\left (\log {\left (\frac {x^{3} - 2 x^{2} \log {\relax (x )} + x^{2} + x \log {\relax (x )}^{2}}{x^{2} - 2 x \log {\relax (x )} + \log {\relax (x )}^{2}} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________