Optimal. Leaf size=32 \[ \frac {2}{\frac {5 e^{-4-\frac {2+x+\left (2-e^x\right ) x}{x}}}{x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 3.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^{8+\frac {2 \left (2+3 x-e^x x\right )}{x}} x^3+e^{\frac {2+3 x-e^x x}{x}} \left (-10 e^{4+x} x^2+e^4 (-20+10 x)\right )}{25 x+10 e^{4+\frac {2+3 x-e^x x}{x}} x^3+e^{8+\frac {2 \left (2+3 x-e^x x\right )}{x}} x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{7+\frac {2}{x}} \left (5 e^{e^x} (-2+x)-5 e^{e^x+x} x^2-e^{7+\frac {2}{x}} x^3\right )}{x \left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx\\ &=2 \int \frac {e^{7+\frac {2}{x}} \left (5 e^{e^x} (-2+x)-5 e^{e^x+x} x^2-e^{7+\frac {2}{x}} x^3\right )}{x \left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx\\ &=2 \int \left (-\frac {5 e^{7+e^x+\frac {2}{x}+x} x}{\left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2}-\frac {e^{7+\frac {2}{x}} \left (10 e^{e^x}-5 e^{e^x} x+e^{7+\frac {2}{x}} x^3\right )}{x \left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{7+\frac {2}{x}} \left (10 e^{e^x}-5 e^{e^x} x+e^{7+\frac {2}{x}} x^3\right )}{x \left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx\right )-10 \int \frac {e^{7+e^x+\frac {2}{x}+x} x}{\left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx\\ &=-\left (2 \int \left (-\frac {10 e^{7+e^x+\frac {2}{x}} (-1+x)}{x \left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2}+\frac {e^{7+\frac {2}{x}}}{5 e^{e^x}+e^{7+\frac {2}{x}} x^2}\right ) \, dx\right )-10 \int \frac {e^{7+e^x+\frac {2}{x}+x} x}{\left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx\\ &=-\left (2 \int \frac {e^{7+\frac {2}{x}}}{5 e^{e^x}+e^{7+\frac {2}{x}} x^2} \, dx\right )-10 \int \frac {e^{7+e^x+\frac {2}{x}+x} x}{\left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx+20 \int \frac {e^{7+e^x+\frac {2}{x}} (-1+x)}{x \left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx\\ &=-\left (2 \int \frac {e^{7+\frac {2}{x}}}{5 e^{e^x}+e^{7+\frac {2}{x}} x^2} \, dx\right )-10 \int \frac {e^{7+e^x+\frac {2}{x}+x} x}{\left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx+20 \int \left (\frac {e^{7+e^x+\frac {2}{x}}}{\left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2}-\frac {e^{7+e^x+\frac {2}{x}}}{x \left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{7+\frac {2}{x}}}{5 e^{e^x}+e^{7+\frac {2}{x}} x^2} \, dx\right )-10 \int \frac {e^{7+e^x+\frac {2}{x}+x} x}{\left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx+20 \int \frac {e^{7+e^x+\frac {2}{x}}}{\left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx-20 \int \frac {e^{7+e^x+\frac {2}{x}}}{x \left (5 e^{e^x}+e^{7+\frac {2}{x}} x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.87, size = 35, normalized size = 1.09 \begin {gather*} \frac {2 e^{7+\frac {2}{x}} x}{5 e^{e^x}+e^{7+\frac {2}{x}} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 57, normalized size = 1.78 \begin {gather*} \frac {2 \, x e^{\left (\frac {{\left ({\left (7 \, x + 2\right )} e^{4} - x e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}}{x}\right )}}{x^{2} e^{\left (\frac {{\left ({\left (7 \, x + 2\right )} e^{4} - x e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}}{x}\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.55, size = 35, normalized size = 1.09 \begin {gather*} \frac {2 \, x e^{\left (\frac {7 \, x + 2}{x}\right )}}{x^{2} e^{\left (\frac {7 \, x + 2}{x}\right )} + 5 \, e^{\left (e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 35, normalized size = 1.09
method | result | size |
risch | \(\frac {2}{x}-\frac {10}{x \left ({\mathrm e}^{-\frac {{\mathrm e}^{x} x -7 x -2}{x}} x^{2}+5\right )}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 31, normalized size = 0.97 \begin {gather*} \frac {2 \, x e^{\left (\frac {2}{x} + 7\right )}}{x^{2} e^{\left (\frac {2}{x} + 7\right )} + 5 \, e^{\left (e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.71, size = 69, normalized size = 2.16 \begin {gather*} \frac {2}{x}-\frac {10\,\left (x^2\,{\mathrm {e}}^x-2\,x+2\right )}{x\,\left ({\mathrm {e}}^{\frac {2}{x}-{\mathrm {e}}^x+3}+\frac {5\,{\mathrm {e}}^{-4}}{x^2}\right )\,\left (x^4\,{\mathrm {e}}^{x+4}+2\,x^2\,{\mathrm {e}}^4-2\,x^3\,{\mathrm {e}}^4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 27, normalized size = 0.84 \begin {gather*} - \frac {10}{x^{3} e^{4} e^{\frac {- x e^{x} + 3 x + 2}{x}} + 5 x} + \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________