Optimal. Leaf size=27 \[ 25 \left (4-e^{\frac {2+5 e^{-x} x}{\log (-3+2 x)}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) \left (100 e^x+250 x+\left (375-625 x+250 x^2\right ) \log (-3+2 x)\right )}{(-3+2 x) \log ^2(-3+2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {100 e^{\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}}}{(-3+2 x) \log ^2(-3+2 x)}+\frac {125 \exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) \left (2 x+3 \log (-3+2 x)-5 x \log (-3+2 x)+2 x^2 \log (-3+2 x)\right )}{(-3+2 x) \log ^2(-3+2 x)}\right ) \, dx\\ &=100 \int \frac {e^{\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}}}{(-3+2 x) \log ^2(-3+2 x)} \, dx+125 \int \frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) \left (2 x+3 \log (-3+2 x)-5 x \log (-3+2 x)+2 x^2 \log (-3+2 x)\right )}{(-3+2 x) \log ^2(-3+2 x)} \, dx\\ &=100 \int \frac {e^{\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}}}{(-3+2 x) \log ^2(-3+2 x)} \, dx+125 \int \left (\frac {2 \exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) x}{(-3+2 x) \log ^2(-3+2 x)}+\frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) (-1+x)}{\log (-3+2 x)}\right ) \, dx\\ &=100 \int \frac {e^{\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}}}{(-3+2 x) \log ^2(-3+2 x)} \, dx+125 \int \frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) (-1+x)}{\log (-3+2 x)} \, dx+250 \int \frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) x}{(-3+2 x) \log ^2(-3+2 x)} \, dx\\ &=100 \int \frac {e^{\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}}}{(-3+2 x) \log ^2(-3+2 x)} \, dx+125 \int \left (\frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right )}{2 \log (-3+2 x)}+\frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) (-3+2 x)}{2 \log (-3+2 x)}\right ) \, dx+250 \int \left (\frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right )}{2 \log ^2(-3+2 x)}+\frac {3 \exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right )}{2 (-3+2 x) \log ^2(-3+2 x)}\right ) \, dx\\ &=\frac {125}{2} \int \frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right )}{\log (-3+2 x)} \, dx+\frac {125}{2} \int \frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right ) (-3+2 x)}{\log (-3+2 x)} \, dx+100 \int \frac {e^{\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}}}{(-3+2 x) \log ^2(-3+2 x)} \, dx+125 \int \frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right )}{\log ^2(-3+2 x)} \, dx+375 \int \frac {\exp \left (-x+\frac {e^{-x} \left (2 e^x+5 x\right )}{\log (-3+2 x)}\right )}{(-3+2 x) \log ^2(-3+2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.25, size = 23, normalized size = 0.85 \begin {gather*} -25 e^{\frac {2+5 e^{-x} x}{\log (-3+2 x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 37, normalized size = 1.37 \begin {gather*} -25 \, e^{\left (x - \frac {{\left (x e^{x} \log \left (2 \, x - 3\right ) - 5 \, x - 2 \, e^{x}\right )} e^{\left (-x\right )}}{\log \left (2 \, x - 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 25, normalized size = 0.93
method | result | size |
risch | \(-25 \,{\mathrm e}^{\frac {\left (2 \,{\mathrm e}^{x}+5 x \right ) {\mathrm e}^{-x}}{\ln \left (2 x -3\right )}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.28, size = 21, normalized size = 0.78 \begin {gather*} -25\,{\mathrm {e}}^{\frac {5\,x\,{\mathrm {e}}^{-x}+2}{\ln \left (2\,x-3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.77, size = 22, normalized size = 0.81 \begin {gather*} - 25 e^{\frac {\left (5 x + 2 e^{x}\right ) e^{- x}}{\log {\left (2 x - 3 \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________