Optimal. Leaf size=21 \[ 1+\log \left (-5+e^{x \left (-3+2 x+\frac {4 x^2}{5}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 33, normalized size of antiderivative = 1.57, number of steps used = 1, number of rules used = 1, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {6684} \begin {gather*} \log \left (-e^{-3 x} \left (5 e^{3 x}-e^{\frac {4 x^3}{5}+2 x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (-e^{-3 x} \left (5 e^{3 x}-e^{2 x^2+\frac {4 x^3}{5}}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 34, normalized size = 1.62 \begin {gather*} \frac {1}{5} \left (-15 x+5 \log \left (-5 e^{3 x}+e^{2 x^2+\frac {4 x^3}{5}}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 18, normalized size = 0.86 \begin {gather*} \log \left (e^{\left (\frac {4}{5} \, x^{3} + 2 \, x^{2} - 3 \, x\right )} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 18, normalized size = 0.86 \begin {gather*} \log \left (e^{\left (\frac {4}{5} \, x^{3} + 2 \, x^{2} - 3 \, x\right )} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.86
method | result | size |
risch | \(\ln \left ({\mathrm e}^{\frac {x \left (4 x^{2}+10 x -15\right )}{5}}-5\right )\) | \(18\) |
norman | \(\ln \left (5 \,{\mathrm e}^{\frac {4}{5} x^{3}+2 x^{2}-3 x}-25\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 36, normalized size = 1.71 \begin {gather*} 2 \, x^{2} - 3 \, x + \log \left ({\left (e^{\left (\frac {4}{5} \, x^{3} + 2 \, x^{2}\right )} - 5 \, e^{\left (3 \, x\right )}\right )} e^{\left (-2 \, x^{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 18, normalized size = 0.86 \begin {gather*} \ln \left ({\mathrm {e}}^{\frac {4\,x^3}{5}+2\,x^2-3\,x}-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 39, normalized size = 1.86 \begin {gather*} \frac {16 x^{3}}{25} + \frac {8 x^{2}}{5} - \frac {12 x}{5} + \frac {\log {\left (e^{\frac {4 x^{3}}{5} + 2 x^{2} - 3 x} - 5 \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________