Optimal. Leaf size=18 \[ \log \left (-3+\frac {1}{e^{224/9}}-2 \log \left (\frac {e^4}{x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 25, normalized size of antiderivative = 1.39, number of steps used = 4, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {6, 12, 31} \begin {gather*} \log \left (-2 e^{224/9} \log \left (\frac {e^4}{x^2}\right )-3 e^{224/9}+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 31
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int -\frac {4 e^{224/9}}{\left (-1+3 e^{224/9}\right ) x+2 e^{224/9} x \log \left (\frac {e^4}{x^2}\right )} \, dx\\ &=-\left (\left (4 e^{224/9}\right ) \int \frac {1}{\left (-1+3 e^{224/9}\right ) x+2 e^{224/9} x \log \left (\frac {e^4}{x^2}\right )} \, dx\right )\\ &=\left (2 e^{224/9}\right ) \operatorname {Subst}\left (\int \frac {1}{-1+3 e^{224/9}+2 e^{224/9} x} \, dx,x,\log \left (\frac {e^4}{x^2}\right )\right )\\ &=\log \left (1-3 e^{224/9}-2 e^{224/9} \log \left (\frac {e^4}{x^2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 21, normalized size = 1.17 \begin {gather*} \log \left (-1+11 e^{224/9}+2 e^{224/9} \log \left (\frac {1}{x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 18, normalized size = 1.00 \begin {gather*} \log \left (2 \, e^{\frac {224}{9}} \log \left (\frac {e^{4}}{x^{2}}\right ) + 3 \, e^{\frac {224}{9}} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 15, normalized size = 0.83 \begin {gather*} \log \left (-2 \, e^{\frac {224}{9}} \log \left (x^{2}\right ) + 11 \, e^{\frac {224}{9}} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 16, normalized size = 0.89
method | result | size |
derivativedivides | \(\ln \left (11 \,{\mathrm e}^{\frac {224}{9}}+2 \,{\mathrm e}^{\frac {224}{9}} \ln \left (\frac {1}{x^{2}}\right )-1\right )\) | \(16\) |
default | \(\ln \left (11 \,{\mathrm e}^{\frac {224}{9}}+2 \,{\mathrm e}^{\frac {224}{9}} \ln \left (\frac {1}{x^{2}}\right )-1\right )\) | \(16\) |
norman | \(\ln \left (2 \,{\mathrm e}^{\frac {224}{9}} \ln \left (\frac {{\mathrm e}^{4}}{x^{2}}\right )+3 \,{\mathrm e}^{\frac {224}{9}}-1\right )\) | \(19\) |
risch | \(\ln \left (\ln \left (\frac {{\mathrm e}^{4}}{x^{2}}\right )+\frac {\left (3 \,{\mathrm e}^{\frac {224}{9}}-1\right ) {\mathrm e}^{-\frac {224}{9}}}{2}\right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 17, normalized size = 0.94 \begin {gather*} \log \left (\frac {1}{4} \, {\left (4 \, e^{\frac {224}{9}} \log \relax (x) - 11 \, e^{\frac {224}{9}} + 1\right )} e^{\left (-\frac {224}{9}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.49, size = 15, normalized size = 0.83 \begin {gather*} \ln \left (11\,{\mathrm {e}}^{224/9}+2\,\ln \left (\frac {1}{x^2}\right )\,{\mathrm {e}}^{224/9}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 24, normalized size = 1.33 \begin {gather*} \log {\left (\log {\left (\frac {e^{4}}{x^{2}} \right )} + \frac {-1 + 3 e^{\frac {224}{9}}}{2 e^{\frac {224}{9}}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________