Optimal. Leaf size=17 \[ \frac {\log \left (\left (-\frac {5}{x^4}+x\right )^2\right )}{6 x} \]
________________________________________________________________________________________
Rubi [A] time = 1.30, antiderivative size = 21, normalized size of antiderivative = 1.24, number of steps used = 19, number of rules used = 11, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1593, 6725, 453, 294, 634, 618, 204, 628, 31, 2525, 12} \begin {gather*} \frac {\log \left (\frac {\left (5-x^5\right )^2}{x^8}\right )}{6 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 204
Rule 294
Rule 453
Rule 618
Rule 628
Rule 634
Rule 1593
Rule 2525
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {40+2 x^5+\left (5-x^5\right ) \log \left (\frac {25-10 x^5+x^{10}}{x^8}\right )}{x^2 \left (-30+6 x^5\right )} \, dx\\ &=\int \left (\frac {20+x^5}{3 x^2 \left (-5+x^5\right )}-\frac {\log \left (\frac {\left (-5+x^5\right )^2}{x^8}\right )}{6 x^2}\right ) \, dx\\ &=-\left (\frac {1}{6} \int \frac {\log \left (\frac {\left (-5+x^5\right )^2}{x^8}\right )}{x^2} \, dx\right )+\frac {1}{3} \int \frac {20+x^5}{x^2 \left (-5+x^5\right )} \, dx\\ &=\frac {4}{3 x}+\frac {\log \left (\frac {\left (5-x^5\right )^2}{x^8}\right )}{6 x}-\frac {1}{6} \int \frac {2 \left (-20-x^5\right )}{x^2 \left (5-x^5\right )} \, dx+\frac {5}{3} \int \frac {x^3}{-5+x^5} \, dx\\ &=\frac {4}{3 x}+\frac {\log \left (\frac {\left (5-x^5\right )^2}{x^8}\right )}{6 x}-\frac {1}{3} \int \frac {-20-x^5}{x^2 \left (5-x^5\right )} \, dx-\frac {\int \frac {1}{\sqrt [5]{5}-x} \, dx}{3 \sqrt [5]{5}}+\frac {2 \int \frac {\frac {1}{4} \sqrt [5]{5} \left (1+\sqrt {5}\right )+\frac {1}{4} \left (-1+\sqrt {5}\right ) x}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right ) x+x^2} \, dx}{3 \sqrt [5]{5}}+\frac {2 \int \frac {\frac {1}{4} \sqrt [5]{5} \left (1-\sqrt {5}\right )+\frac {1}{4} \left (-1-\sqrt {5}\right ) x}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right ) x+x^2} \, dx}{3 \sqrt [5]{5}}\\ &=\frac {\log \left (\sqrt [5]{5}-x\right )}{3 \sqrt [5]{5}}+\frac {\log \left (\frac {\left (5-x^5\right )^2}{x^8}\right )}{6 x}+\frac {5}{3} \int \frac {x^3}{5-x^5} \, dx-\frac {\left (1-\sqrt {5}\right ) \int \frac {\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right )+2 x}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right ) x+x^2} \, dx}{12 \sqrt [5]{5}}-\frac {1}{12} \left (-5+\sqrt {5}\right ) \int \frac {1}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right ) x+x^2} \, dx-\frac {\left (1+\sqrt {5}\right ) \int \frac {\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right )+2 x}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right ) x+x^2} \, dx}{12 \sqrt [5]{5}}+\frac {1}{12} \left (5+\sqrt {5}\right ) \int \frac {1}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right ) x+x^2} \, dx\\ &=\frac {\log \left (\sqrt [5]{5}-x\right )}{3 \sqrt [5]{5}}-\frac {\left (1-\sqrt {5}\right ) \log \left (2\ 5^{2/5}+\sqrt [5]{5} x-5^{7/10} x+2 x^2\right )}{12 \sqrt [5]{5}}-\frac {\left (1+\sqrt {5}\right ) \log \left (2\ 5^{2/5}+\sqrt [5]{5} x+5^{7/10} x+2 x^2\right )}{12 \sqrt [5]{5}}+\frac {\log \left (\frac {\left (5-x^5\right )^2}{x^8}\right )}{6 x}+\frac {\int \frac {1}{\sqrt [5]{5}-x} \, dx}{3 \sqrt [5]{5}}-\frac {2 \int \frac {\frac {1}{4} \sqrt [5]{5} \left (1+\sqrt {5}\right )+\frac {1}{4} \left (-1+\sqrt {5}\right ) x}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right ) x+x^2} \, dx}{3 \sqrt [5]{5}}-\frac {2 \int \frac {\frac {1}{4} \sqrt [5]{5} \left (1-\sqrt {5}\right )+\frac {1}{4} \left (-1-\sqrt {5}\right ) x}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right ) x+x^2} \, dx}{3 \sqrt [5]{5}}-\frac {1}{6} \left (5-\sqrt {5}\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {1}{2} 5^{9/10} \left (1-\sqrt {5}\right )-x^2} \, dx,x,\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right )+2 x\right )-\frac {1}{6} \left (5+\sqrt {5}\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {1}{2} 5^{2/5} \left (5+\sqrt {5}\right )-x^2} \, dx,x,\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right )+2 x\right )\\ &=\frac {\sqrt {5+\sqrt {5}} \tan ^{-1}\left (\frac {\sqrt [5]{5}-5^{7/10}+4 x}{\sqrt [5]{5} \sqrt {2 \left (5+\sqrt {5}\right )}}\right )}{3 \sqrt {2} \sqrt [5]{5}}+\frac {\sqrt [20]{5} \sqrt {-1+\sqrt {5}} \tan ^{-1}\left (\frac {\sqrt [5]{5}+5^{7/10}+4 x}{5^{9/20} \sqrt {2 \left (-1+\sqrt {5}\right )}}\right )}{3 \sqrt {2}}-\frac {\left (1-\sqrt {5}\right ) \log \left (2\ 5^{2/5}+\sqrt [5]{5} x-5^{7/10} x+2 x^2\right )}{12 \sqrt [5]{5}}-\frac {\left (1+\sqrt {5}\right ) \log \left (2\ 5^{2/5}+\sqrt [5]{5} x+5^{7/10} x+2 x^2\right )}{12 \sqrt [5]{5}}+\frac {\log \left (\frac {\left (5-x^5\right )^2}{x^8}\right )}{6 x}+\frac {\left (1-\sqrt {5}\right ) \int \frac {\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right )+2 x}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right ) x+x^2} \, dx}{12 \sqrt [5]{5}}+\frac {1}{12} \left (-5+\sqrt {5}\right ) \int \frac {1}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right ) x+x^2} \, dx+\frac {\left (1+\sqrt {5}\right ) \int \frac {\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right )+2 x}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right ) x+x^2} \, dx}{12 \sqrt [5]{5}}-\frac {1}{12} \left (5+\sqrt {5}\right ) \int \frac {1}{5^{2/5}+\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right ) x+x^2} \, dx\\ &=\frac {\sqrt {5+\sqrt {5}} \tan ^{-1}\left (\frac {\sqrt [5]{5}-5^{7/10}+4 x}{\sqrt [5]{5} \sqrt {2 \left (5+\sqrt {5}\right )}}\right )}{3 \sqrt {2} \sqrt [5]{5}}+\frac {\sqrt [20]{5} \sqrt {-1+\sqrt {5}} \tan ^{-1}\left (\frac {\sqrt [5]{5}+5^{7/10}+4 x}{5^{9/20} \sqrt {2 \left (-1+\sqrt {5}\right )}}\right )}{3 \sqrt {2}}+\frac {\log \left (\frac {\left (5-x^5\right )^2}{x^8}\right )}{6 x}+\frac {1}{6} \left (5-\sqrt {5}\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {1}{2} 5^{9/10} \left (1-\sqrt {5}\right )-x^2} \, dx,x,\frac {1}{2} \sqrt [5]{5} \left (1+\sqrt {5}\right )+2 x\right )+\frac {1}{6} \left (5+\sqrt {5}\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {1}{2} 5^{2/5} \left (5+\sqrt {5}\right )-x^2} \, dx,x,\frac {1}{2} \sqrt [5]{5} \left (1-\sqrt {5}\right )+2 x\right )\\ &=\frac {\log \left (\frac {\left (5-x^5\right )^2}{x^8}\right )}{6 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 1.12 \begin {gather*} \frac {\log \left (\frac {\left (-5+x^5\right )^2}{x^8}\right )}{6 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.16, size = 20, normalized size = 1.18 \begin {gather*} \frac {\log \left (\frac {x^{10} - 10 \, x^{5} + 25}{x^{8}}\right )}{6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.50, size = 20, normalized size = 1.18 \begin {gather*} \frac {\log \left (\frac {x^{10} - 10 \, x^{5} + 25}{x^{8}}\right )}{6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 21, normalized size = 1.24
method | result | size |
default | \(\frac {\ln \left (\frac {x^{10}-10 x^{5}+25}{x^{8}}\right )}{6 x}\) | \(21\) |
norman | \(\frac {\ln \left (\frac {x^{10}-10 x^{5}+25}{x^{8}}\right )}{6 x}\) | \(21\) |
risch | \(\frac {\ln \left (\frac {x^{10}-10 x^{5}+25}{x^{8}}\right )}{6 x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 23, normalized size = 1.35 \begin {gather*} \frac {\log \left (x^{5} - 5\right ) - 4 \, \log \relax (x) - 4}{3 \, x} + \frac {4}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.09, size = 20, normalized size = 1.18 \begin {gather*} \frac {\ln \left (\frac {x^{10}-10\,x^5+25}{x^8}\right )}{6\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 1.00 \begin {gather*} \frac {\log {\left (\frac {x^{10} - 10 x^{5} + 25}{x^{8}} \right )}}{6 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________