Optimal. Leaf size=22 \[ e^{-e^x x-\log ^2(-x+\log (x))} x \]
________________________________________________________________________________________
Rubi [F] time = 3.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^x x-\log ^2(-x+\log (x))} x \left (-x+e^x \left (x^2+x^3\right )+\left (1+e^x \left (-x-x^2\right )\right ) \log (x)+(-2+2 x) \log (-x+\log (x))\right )}{-x^2+x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^x x-\log ^2(-x+\log (x))} \left (-x+e^x \left (x^2+x^3\right )+\left (1+e^x \left (-x-x^2\right )\right ) \log (x)+(-2+2 x) \log (-x+\log (x))\right )}{-x+\log (x)} \, dx\\ &=\int \left (-e^{x-e^x x-\log ^2(-x+\log (x))} x (1+x)+\frac {e^{-e^x x-\log ^2(-x+\log (x))} (x-\log (x)+2 \log (-x+\log (x))-2 x \log (-x+\log (x)))}{x-\log (x)}\right ) \, dx\\ &=-\int e^{x-e^x x-\log ^2(-x+\log (x))} x (1+x) \, dx+\int \frac {e^{-e^x x-\log ^2(-x+\log (x))} (x-\log (x)+2 \log (-x+\log (x))-2 x \log (-x+\log (x)))}{x-\log (x)} \, dx\\ &=-\int \left (e^{x-e^x x-\log ^2(-x+\log (x))} x+e^{x-e^x x-\log ^2(-x+\log (x))} x^2\right ) \, dx+\int \frac {e^{-e^x x-\log ^2(-x+\log (x))} (x-\log (x)-2 (-1+x) \log (-x+\log (x)))}{x-\log (x)} \, dx\\ &=-\int e^{x-e^x x-\log ^2(-x+\log (x))} x \, dx-\int e^{x-e^x x-\log ^2(-x+\log (x))} x^2 \, dx+\int \left (e^{-e^x x-\log ^2(-x+\log (x))}-\frac {2 e^{-e^x x-\log ^2(-x+\log (x))} (-1+x) \log (-x+\log (x))}{x-\log (x)}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-e^x x-\log ^2(-x+\log (x))} (-1+x) \log (-x+\log (x))}{x-\log (x)} \, dx\right )+\int e^{-e^x x-\log ^2(-x+\log (x))} \, dx-\int e^{x-e^x x-\log ^2(-x+\log (x))} x \, dx-\int e^{x-e^x x-\log ^2(-x+\log (x))} x^2 \, dx\\ &=-\left (2 \int \left (-\frac {e^{-e^x x-\log ^2(-x+\log (x))} \log (-x+\log (x))}{x-\log (x)}+\frac {e^{-e^x x-\log ^2(-x+\log (x))} x \log (-x+\log (x))}{x-\log (x)}\right ) \, dx\right )+\int e^{-e^x x-\log ^2(-x+\log (x))} \, dx-\int e^{x-e^x x-\log ^2(-x+\log (x))} x \, dx-\int e^{x-e^x x-\log ^2(-x+\log (x))} x^2 \, dx\\ &=2 \int \frac {e^{-e^x x-\log ^2(-x+\log (x))} \log (-x+\log (x))}{x-\log (x)} \, dx-2 \int \frac {e^{-e^x x-\log ^2(-x+\log (x))} x \log (-x+\log (x))}{x-\log (x)} \, dx+\int e^{-e^x x-\log ^2(-x+\log (x))} \, dx-\int e^{x-e^x x-\log ^2(-x+\log (x))} x \, dx-\int e^{x-e^x x-\log ^2(-x+\log (x))} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.66, size = 22, normalized size = 1.00 \begin {gather*} e^{-e^x x-\log ^2(-x+\log (x))} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 20, normalized size = 0.91 \begin {gather*} e^{\left (-x e^{x} - \log \left (-x + \log \relax (x)\right )^{2} + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.10, size = 20, normalized size = 0.91 \begin {gather*} e^{\left (-x e^{x} - \log \left (-x + \log \relax (x)\right )^{2} + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.95
method | result | size |
risch | \(x \,{\mathrm e}^{-\ln \left (\ln \relax (x )-x \right )^{2}-{\mathrm e}^{x} x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 20, normalized size = 0.91 \begin {gather*} x e^{\left (-x e^{x} - \log \left (-x + \log \relax (x)\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 20, normalized size = 0.91 \begin {gather*} x\,{\mathrm {e}}^{-x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-{\ln \left (\ln \relax (x)-x\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.13, size = 17, normalized size = 0.77 \begin {gather*} x e^{- x e^{x} - \log {\left (- x + \log {\relax (x )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________