Optimal. Leaf size=19 \[ x+e^x x+\log \left (e^5 x\right ) \log (1+\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.68, antiderivative size = 31, normalized size of antiderivative = 1.63, number of steps used = 16, number of rules used = 9, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.180, Rules used = {2561, 6742, 2176, 2194, 43, 2302, 29, 2389, 2295} \begin {gather*} x-e^x+e^x (x+1)+(\log (x)+1) \log (\log (x)+1)+4 \log (\log (x)+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 43
Rule 2176
Rule 2194
Rule 2295
Rule 2302
Rule 2389
Rule 2561
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x+e^x \left (x+x^2\right )+\left (x+e^x \left (x+x^2\right )\right ) \log (x)+\log \left (e^5 x\right )+(1+\log (x)) \log (1+\log (x))}{x (1+\log (x))} \, dx\\ &=\int \left (e^x (1+x)+\frac {5+x+\log (x)+x \log (x)+\log (1+\log (x))+\log (x) \log (1+\log (x))}{x (1+\log (x))}\right ) \, dx\\ &=\int e^x (1+x) \, dx+\int \frac {5+x+\log (x)+x \log (x)+\log (1+\log (x))+\log (x) \log (1+\log (x))}{x (1+\log (x))} \, dx\\ &=e^x (1+x)-\int e^x \, dx+\int \left (\frac {5+x+\log (x)+x \log (x)}{x (1+\log (x))}+\frac {\log (1+\log (x))}{x}\right ) \, dx\\ &=-e^x+e^x (1+x)+\int \frac {5+x+\log (x)+x \log (x)}{x (1+\log (x))} \, dx+\int \frac {\log (1+\log (x))}{x} \, dx\\ &=-e^x+e^x (1+x)+\int \left (\frac {1+x}{x}+\frac {4}{x (1+\log (x))}\right ) \, dx+\operatorname {Subst}(\int \log (1+x) \, dx,x,\log (x))\\ &=-e^x+e^x (1+x)+4 \int \frac {1}{x (1+\log (x))} \, dx+\int \frac {1+x}{x} \, dx+\operatorname {Subst}(\int \log (x) \, dx,x,1+\log (x))\\ &=-e^x+e^x (1+x)-\log (x)+(1+\log (x)) \log (1+\log (x))+4 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,1+\log (x)\right )+\int \left (1+\frac {1}{x}\right ) \, dx\\ &=-e^x+x+e^x (1+x)+4 \log (1+\log (x))+(1+\log (x)) \log (1+\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 18, normalized size = 0.95 \begin {gather*} \left (1+e^x\right ) x+(5+\log (x)) \log (1+\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 16, normalized size = 0.84 \begin {gather*} x e^{x} + {\left (\log \relax (x) + 5\right )} \log \left (\log \relax (x) + 1\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 1.11 \begin {gather*} x e^{x} + \log \relax (x) \log \left (\log \relax (x) + 1\right ) + x + 5 \, \log \left (\log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 22, normalized size = 1.16
method | result | size |
risch | \(\ln \left (\ln \relax (x )+1\right ) \ln \relax (x )+{\mathrm e}^{x} x +x +5 \ln \left (\ln \relax (x )+1\right )\) | \(22\) |
default | \(\left (\ln \relax (x )+1\right ) \ln \left (\ln \relax (x )+1\right )-1+x +4 \ln \left (\ln \relax (x )+1\right )+{\mathrm e}^{x} x\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 16, normalized size = 0.84 \begin {gather*} x e^{x} + {\left (\log \relax (x) + 5\right )} \log \left (\log \relax (x) + 1\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.25, size = 21, normalized size = 1.11 \begin {gather*} x+5\,\ln \left (\ln \relax (x)+1\right )+x\,{\mathrm {e}}^x+\ln \left (\ln \relax (x)+1\right )\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 24, normalized size = 1.26 \begin {gather*} x e^{x} + x + \log {\relax (x )} \log {\left (\log {\relax (x )} + 1 \right )} + 5 \log {\left (\log {\relax (x )} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________