Optimal. Leaf size=27 \[ \left (-1+\frac {5}{x-(-2 x+5 (25+\log (x)))^2}\right ) \log \left (x^3\right ) \]
________________________________________________________________________________________
Rubi [F] time = 13.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-732656250+46976265 x-1128063 x^2+12024 x^3-48 x^4+\left (-117206250+5632800 x-90120 x^2+480 x^3\right ) \log (x)+\left (-7031625+225150 x-1800 x^2\right ) \log ^2(x)+(-187500+3000 x) \log ^3(x)-1875 \log ^4(x)+\left (6250-2605 x+40 x^2+(250-100 x) \log (x)\right ) \log \left (x^3\right )}{244140625 x-15656250 x^2+376001 x^3-4008 x^4+16 x^5+\left (39062500 x-1877500 x^2+30040 x^3-160 x^4\right ) \log (x)+\left (2343750 x-75050 x^2+600 x^3\right ) \log ^2(x)+\left (62500 x-1000 x^2\right ) \log ^3(x)+625 x \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 \left (244218750-15658755 x+376021 x^2-4008 x^3+16 x^4\right )-75 \left (93755-3002 x+24 x^2\right ) \log ^2(x)+1500 (-125+2 x) \log ^3(x)-1875 \log ^4(x)+5 \left (1250-521 x+8 x^2\right ) \log \left (x^3\right )+10 \log (x) \left (-11720625+563280 x-9012 x^2+48 x^3-5 (-5+2 x) \log \left (x^3\right )\right )}{x \left (15625-501 x+4 x^2+(1250-20 x) \log (x)+25 \log ^2(x)\right )^2} \, dx\\ &=\int \left (-\frac {3 \left (15625-501 x+4 x^2\right ) \left (15630-501 x+4 x^2\right )}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}+\frac {5632800 \log (x)}{\left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}-\frac {117206250 \log (x)}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}-\frac {90120 x \log (x)}{\left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}+\frac {480 x^2 \log (x)}{\left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}-\frac {75 \left (93755-3002 x+24 x^2\right ) \log ^2(x)}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}+\frac {1500 (-125+2 x) \log ^3(x)}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}-\frac {1875 \log ^4(x)}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}+\frac {5 \left (1250-521 x+8 x^2+50 \log (x)-20 x \log (x)\right ) \log \left (x^3\right )}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {\left (15625-501 x+4 x^2\right ) \left (15630-501 x+4 x^2\right )}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx\right )+5 \int \frac {\left (1250-521 x+8 x^2+50 \log (x)-20 x \log (x)\right ) \log \left (x^3\right )}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx-75 \int \frac {\left (93755-3002 x+24 x^2\right ) \log ^2(x)}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx+480 \int \frac {x^2 \log (x)}{\left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx+1500 \int \frac {(-125+2 x) \log ^3(x)}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx-1875 \int \frac {\log ^4(x)}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx-90120 \int \frac {x \log (x)}{\left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx+5632800 \int \frac {\log (x)}{\left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx-117206250 \int \frac {\log (x)}{x \left (15625-501 x+4 x^2+1250 \log (x)-20 x \log (x)+25 \log ^2(x)\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 37, normalized size = 1.37 \begin {gather*} -3 \log (x)-\frac {5 \log \left (x^3\right )}{15625-501 x+4 x^2+(1250-20 x) \log (x)+25 \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.05, size = 61, normalized size = 2.26 \begin {gather*} \frac {3 \, {\left (10 \, {\left (2 \, x - 125\right )} \log \relax (x)^{2} - 25 \, \log \relax (x)^{3} - {\left (4 \, x^{2} - 501 \, x + 15630\right )} \log \relax (x)\right )}}{4 \, x^{2} - 10 \, {\left (2 \, x - 125\right )} \log \relax (x) + 25 \, \log \relax (x)^{2} - 501 \, x + 15625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 36, normalized size = 1.33 \begin {gather*} -\frac {15 \, \log \relax (x)}{4 \, x^{2} - 20 \, x \log \relax (x) + 25 \, \log \relax (x)^{2} - 501 \, x + 1250 \, \log \relax (x) + 15625} - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 163, normalized size = 6.04
method | result | size |
risch | \(-3 \ln \relax (x )-\frac {5 \left (6 \ln \relax (x )-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}\right )}{2 \left (25 \ln \relax (x )^{2}-20 x \ln \relax (x )+4 x^{2}+1250 \ln \relax (x )-501 x +15625\right )}\) | \(163\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 36, normalized size = 1.33 \begin {gather*} -\frac {15 \, \log \relax (x)}{4 \, x^{2} - 10 \, {\left (2 \, x - 125\right )} \log \relax (x) + 25 \, \log \relax (x)^{2} - 501 \, x + 15625} - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\ln \relax (x)}^2\,\left (1800\,x^2-225150\,x+7031625\right )-46976265\,x+1875\,{\ln \relax (x)}^4+\ln \left (x^3\right )\,\left (2605\,x+\ln \relax (x)\,\left (100\,x-250\right )-40\,x^2-6250\right )+1128063\,x^2-12024\,x^3+48\,x^4-{\ln \relax (x)}^3\,\left (3000\,x-187500\right )-\ln \relax (x)\,\left (480\,x^3-90120\,x^2+5632800\,x-117206250\right )+732656250}{244140625\,x+{\ln \relax (x)}^3\,\left (62500\,x-1000\,x^2\right )+625\,x\,{\ln \relax (x)}^4+\ln \relax (x)\,\left (-160\,x^4+30040\,x^3-1877500\,x^2+39062500\,x\right )+{\ln \relax (x)}^2\,\left (600\,x^3-75050\,x^2+2343750\,x\right )-15656250\,x^2+376001\,x^3-4008\,x^4+16\,x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 36, normalized size = 1.33 \begin {gather*} - 3 \log {\relax (x )} - \frac {15 \log {\relax (x )}}{4 x^{2} - 501 x + \left (1250 - 20 x\right ) \log {\relax (x )} + 25 \log {\relax (x )}^{2} + 15625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________