Optimal. Leaf size=26 \[ -4+\frac {x}{\log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-1+e^x (1+x)\right ) \log \left (e^{-x} \left (1+e^x (-1-x)\right )\right )+\left (\left (-x-e^x x\right ) \log (x)+\left (-1+e^x (1+x)\right ) \log \left (e^{-x} \left (1+e^x (-1-x)\right )\right ) \log (x)\right ) \log \left (\frac {3}{\log (x)}\right )}{\left (-1+e^x (1+x)\right ) \log ^2\left (e^{-x} \left (1+e^x (-1-x)\right )\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {\left (1+e^x\right ) x \log \left (\frac {3}{\log (x)}\right )}{-1+e^x (1+x)}+\log \left (-1+e^{-x}-x\right ) \left (\frac {1}{\log (x)}+\log \left (\frac {3}{\log (x)}\right )\right )}{\log ^2\left (-1+e^{-x}-x\right ) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx\\ &=\int \left (-\frac {x (2+x)}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}+\frac {\log \left (-1+e^{-x}-x\right )+x \log \left (-1+e^{-x}-x\right )-x \log (x) \log \left (\frac {3}{\log (x)}\right )+\log \left (-1+e^{-x}-x\right ) \log (x) \log \left (\frac {3}{\log (x)}\right )+x \log \left (-1+e^{-x}-x\right ) \log (x) \log \left (\frac {3}{\log (x)}\right )}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )}\right ) \, dx\\ &=-\int \frac {x (2+x)}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {\log \left (-1+e^{-x}-x\right )+x \log \left (-1+e^{-x}-x\right )-x \log (x) \log \left (\frac {3}{\log (x)}\right )+\log \left (-1+e^{-x}-x\right ) \log (x) \log \left (\frac {3}{\log (x)}\right )+x \log \left (-1+e^{-x}-x\right ) \log (x) \log \left (\frac {3}{\log (x)}\right )}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx\\ &=-\int \left (\frac {1}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}+\frac {x}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}-\frac {1}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}\right ) \, dx+\int \frac {-x \log (x) \log \left (\frac {3}{\log (x)}\right )+(1+x) \log \left (-1+e^{-x}-x\right ) \left (1+\log (x) \log \left (\frac {3}{\log (x)}\right )\right )}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx\\ &=\int \left (\frac {1}{\log \left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )}+\frac {-x+\log \left (-1+e^{-x}-x\right )+x \log \left (-1+e^{-x}-x\right )}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}\right ) \, dx-\int \frac {1}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {x}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx\\ &=\int \frac {1}{\log \left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {1}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {x}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {-x+\log \left (-1+e^{-x}-x\right )+x \log \left (-1+e^{-x}-x\right )}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx\\ &=\int \frac {1}{\log \left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {1}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {x}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {-x+(1+x) \log \left (-1+e^{-x}-x\right )}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx\\ &=\int \left (-\frac {x}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}+\frac {1}{(1+x) \log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}+\frac {x}{(1+x) \log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}\right ) \, dx+\int \frac {1}{\log \left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {1}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {x}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx\\ &=\int \frac {1}{\log \left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {x}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {1}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {x}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {x}{(1+x) \log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx\\ &=-\int \left (\frac {1}{\log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}-\frac {1}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}\right ) \, dx+\int \left (\frac {1}{\log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}-\frac {1}{(1+x) \log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )}\right ) \, dx+\int \frac {1}{\log \left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {1}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {x}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx\\ &=\int \frac {1}{\log \left (-1+e^{-x}-x\right ) \log (x) \log ^2\left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {1}{\log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {1}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx-\int \frac {x}{\left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{(1+x) \left (-1+e^x+e^x x\right ) \log ^2\left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx+\int \frac {1}{\log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.94, size = 24, normalized size = 0.92 \begin {gather*} \frac {x}{\log \left (-1+e^{-x}-x\right ) \log \left (\frac {3}{\log (x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 28, normalized size = 1.08 \begin {gather*} \frac {x}{\log \left (-{\left ({\left (x + 1\right )} e^{x} - 1\right )} e^{\left (-x\right )}\right ) \log \left (\frac {3}{\log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.93, size = 48, normalized size = 1.85 \begin {gather*} -\frac {x}{x \log \relax (3) - \log \relax (3) \log \left (-x e^{x} - e^{x} + 1\right ) - x \log \left (\log \relax (x)\right ) + \log \left (-x e^{x} - e^{x} + 1\right ) \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 67.79, size = 184, normalized size = 7.08
method | result | size |
risch | \(-\frac {4 x}{\left (2 i \ln \relax (3)-2 i \ln \left (\ln \relax (x )\right )\right ) \left (\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +{\mathrm e}^{x}-1\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left ({\mathrm e}^{x} x +{\mathrm e}^{x}-1\right )\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left ({\mathrm e}^{x} x +{\mathrm e}^{x}-1\right )\right )^{2}+2 \pi \mathrm {csgn}\left (i {\mathrm e}^{-x} \left ({\mathrm e}^{x} x +{\mathrm e}^{x}-1\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +{\mathrm e}^{x}-1\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left ({\mathrm e}^{x} x +{\mathrm e}^{x}-1\right )\right )^{2}-\pi \mathrm {csgn}\left (i {\mathrm e}^{-x} \left ({\mathrm e}^{x} x +{\mathrm e}^{x}-1\right )\right )^{3}-2 \pi +2 i \ln \left ({\mathrm e}^{x} x +{\mathrm e}^{x}-1\right )-2 i \ln \left ({\mathrm e}^{x}\right )\right )}\) | \(184\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 36, normalized size = 1.38 \begin {gather*} -\frac {x}{x \log \relax (3) - {\left (\log \relax (3) - \log \left (\log \relax (x)\right )\right )} \log \left (-{\left (x + 1\right )} e^{x} + 1\right ) - x \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 1156, normalized size = 44.46 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.74, size = 22, normalized size = 0.85 \begin {gather*} \frac {x}{\log {\left (\left (\left (- x - 1\right ) e^{x} + 1\right ) e^{- x} \right )} \log {\left (\frac {3}{\log {\relax (x )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________