Optimal. Leaf size=20 \[ \frac {e^{\frac {16}{e^2}}}{e^4+\frac {\log (x)}{9}} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 19, normalized size of antiderivative = 0.95, number of steps used = 3, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {12, 32} \begin {gather*} \frac {9 e^{\frac {16}{e^2}}}{\log (x)+9 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (9 e^{\frac {16}{e^2}}\right ) \int \frac {1}{81 e^8 x+18 e^4 x \log (x)+x \log ^2(x)} \, dx\right )\\ &=-\left (\left (9 e^{\frac {16}{e^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (9 e^4+x\right )^2} \, dx,x,\log (x)\right )\right )\\ &=\frac {9 e^{\frac {16}{e^2}}}{9 e^4+\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.95 \begin {gather*} \frac {9 e^{\frac {16}{e^2}}}{9 e^4+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 16, normalized size = 0.80 \begin {gather*} \frac {9 \, e^{\left (16 \, e^{\left (-2\right )}\right )}}{9 \, e^{4} + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 17, normalized size = 0.85
method | result | size |
risch | \(\frac {9 \,{\mathrm e}^{16 \,{\mathrm e}^{-2}}}{\ln \relax (x )+9 \,{\mathrm e}^{4}}\) | \(17\) |
norman | \(\frac {9 \,{\mathrm e}^{16 \,{\mathrm e}^{-2}}}{\ln \relax (x )+9 \,{\mathrm e}^{4}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 16, normalized size = 0.80 \begin {gather*} \frac {9 \, e^{\left (16 \, e^{\left (-2\right )}\right )}}{9 \, e^{4} + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.29, size = 16, normalized size = 0.80 \begin {gather*} \frac {9\,{\mathrm {e}}^{16\,{\mathrm {e}}^{-2}}}{9\,{\mathrm {e}}^4+\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.75 \begin {gather*} \frac {9 e^{\frac {16}{e^{2}}}}{\log {\relax (x )} + 9 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________