Optimal. Leaf size=23 \[ 5-x+\frac {-2-\frac {1}{\log (3+x)}+\log (\log (5))}{\log ^2(3)} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 16, normalized size of antiderivative = 0.70, number of steps used = 6, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {12, 6688, 2390, 2302, 30} \begin {gather*} -x-\frac {1}{\log ^2(3) \log (x+3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2302
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {1+(-3-x) \log ^2(3) \log ^2(3+x)}{(3+x) \log ^2(3+x)} \, dx}{\log ^2(3)}\\ &=\frac {\int \left (-\log ^2(3)+\frac {1}{(3+x) \log ^2(3+x)}\right ) \, dx}{\log ^2(3)}\\ &=-x+\frac {\int \frac {1}{(3+x) \log ^2(3+x)} \, dx}{\log ^2(3)}\\ &=-x+\frac {\operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,3+x\right )}{\log ^2(3)}\\ &=-x+\frac {\operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (3+x)\right )}{\log ^2(3)}\\ &=-x-\frac {1}{\log ^2(3) \log (3+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.70 \begin {gather*} -x-\frac {1}{\log ^2(3) \log (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 24, normalized size = 1.04 \begin {gather*} -\frac {x \log \relax (3)^{2} \log \left (x + 3\right ) + 1}{\log \relax (3)^{2} \log \left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.34, size = 19, normalized size = 0.83 \begin {gather*} -\frac {x \log \relax (3)^{2} + \frac {1}{\log \left (x + 3\right )}}{\log \relax (3)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 17, normalized size = 0.74
method | result | size |
risch | \(-x -\frac {1}{\ln \relax (3)^{2} \ln \left (3+x \right )}\) | \(17\) |
derivativedivides | \(\frac {-\ln \relax (3)^{2} \left (3+x \right )-\frac {1}{\ln \left (3+x \right )}}{\ln \relax (3)^{2}}\) | \(24\) |
default | \(\frac {-\ln \relax (3)^{2} \left (3+x \right )-\frac {1}{\ln \left (3+x \right )}}{\ln \relax (3)^{2}}\) | \(24\) |
norman | \(\frac {-\frac {1}{\ln \relax (3)}-x \ln \relax (3) \ln \left (3+x \right )}{\ln \relax (3) \ln \left (3+x \right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 36, normalized size = 1.57 \begin {gather*} -\frac {{\left (x - 3 \, \log \left (x + 3\right )\right )} \log \relax (3)^{2} + 3 \, \log \relax (3)^{2} \log \left (x + 3\right ) + \frac {1}{\log \left (x + 3\right )}}{\log \relax (3)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.42, size = 16, normalized size = 0.70 \begin {gather*} -x-\frac {1}{\ln \left (x+3\right )\,{\ln \relax (3)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.61 \begin {gather*} - x - \frac {1}{\log {\relax (3 )}^{2} \log {\left (x + 3 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________