Optimal. Leaf size=32 \[ \frac {1}{4} e^{-\frac {e^x}{2}-x \left (1-e^x x\right ) \log (3)} (-5+4 x) \]
________________________________________________________________________________________
Rubi [B] time = 0.24, antiderivative size = 92, normalized size of antiderivative = 2.88, number of steps used = 2, number of rules used = 2, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {12, 2288} \begin {gather*} \frac {3^{e^x x^2-x} e^{-\frac {e^x}{2}} \left (e^x \left (-2 \left (-4 x^3-3 x^2+10 x\right ) \log (3)-4 x+5\right )+2 (5-4 x) \log (3)\right )}{4 \left (-e^x \left (1-2 x^2 \log (3)\right )+4 e^x x \log (3)-\log (9)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \exp \left (\frac {1}{2} \left (-2 x \log (3)-e^x \left (1-2 x^2 \log (3)\right )\right )\right ) \left (8+(10-8 x) \log (3)+e^x \left (5-4 x+\left (-20 x+6 x^2+8 x^3\right ) \log (3)\right )\right ) \, dx\\ &=\frac {3^{-x+e^x x^2} e^{-\frac {e^x}{2}} \left (2 (5-4 x) \log (3)+e^x \left (5-4 x-2 \left (10 x-3 x^2-4 x^3\right ) \log (3)\right )\right )}{4 \left (4 e^x x \log (3)-e^x \left (1-2 x^2 \log (3)\right )-\log (9)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 3.15, size = 69, normalized size = 2.16 \begin {gather*} \frac {1}{8} \int e^{\frac {1}{2} \left (-2 x \log (3)-e^x \left (1-2 x^2 \log (3)\right )\right )} \left (8+(10-8 x) \log (3)+e^x \left (5-4 x+\left (-20 x+6 x^2+8 x^3\right ) \log (3)\right )\right ) \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 27, normalized size = 0.84 \begin {gather*} \frac {1}{4} \, {\left (4 \, x - 5\right )} e^{\left (\frac {1}{2} \, {\left (2 \, x^{2} \log \relax (3) - 1\right )} e^{x} - x \log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{8} \, {\left ({\left (2 \, {\left (4 \, x^{3} + 3 \, x^{2} - 10 \, x\right )} \log \relax (3) - 4 \, x + 5\right )} e^{x} - 2 \, {\left (4 \, x - 5\right )} \log \relax (3) + 8\right )} e^{\left (\frac {1}{2} \, {\left (2 \, x^{2} \log \relax (3) - 1\right )} e^{x} - x \log \relax (3)\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 26, normalized size = 0.81
method | result | size |
norman | \(\left (x -\frac {5}{4}\right ) {\mathrm e}^{-\frac {\left (-2 x^{2} \ln \relax (3)+1\right ) {\mathrm e}^{x}}{2}+x \ln \left (\frac {1}{3}\right )}\) | \(26\) |
risch | \(\frac {\left (8 x -10\right ) 3^{-x} 3^{{\mathrm e}^{x} x^{2}} {\mathrm e}^{-\frac {{\mathrm e}^{x}}{2}}}{8}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 26, normalized size = 0.81 \begin {gather*} \frac {1}{4} \, {\left (4 \, x - 5\right )} e^{\left (x^{2} e^{x} \log \relax (3) - x \log \relax (3) - \frac {1}{2} \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 25, normalized size = 0.78 \begin {gather*} \frac {3^{x^2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^x}{2}}\,\left (4\,x-5\right )}{4\,3^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 27, normalized size = 0.84 \begin {gather*} \frac {\left (4 x - 5\right ) e^{- x \log {\relax (3 )} - \left (- x^{2} \log {\relax (3 )} + \frac {1}{2}\right ) e^{x}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________