Optimal. Leaf size=22 \[ \log \left (\frac {15 e^3}{x}+3 x+\frac {x+x^3}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 3, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {2074, 1587} \begin {gather*} \log \left (x^3+3 x^2+x+15 e^3\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{x}+\frac {1+6 x+3 x^2}{15 e^3+x+3 x^2+x^3}\right ) \, dx\\ &=-\log (x)+\int \frac {1+6 x+3 x^2}{15 e^3+x+3 x^2+x^3} \, dx\\ &=-\log (x)+\log \left (15 e^3+x+3 x^2+x^3\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.95 \begin {gather*} -\log (x)+\log \left (15 e^3+x+3 x^2+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 20, normalized size = 0.91 \begin {gather*} \log \left (x^{3} + 3 \, x^{2} + x + 15 \, e^{3}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 22, normalized size = 1.00 \begin {gather*} \log \left ({\left | x^{3} + 3 \, x^{2} + x + 15 \, e^{3} \right |}\right ) - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 21, normalized size = 0.95
method | result | size |
default | \(\ln \left (x^{3}+3 x^{2}+15 \,{\mathrm e}^{3}+x \right )-\ln \relax (x )\) | \(21\) |
norman | \(\ln \left (x^{3}+3 x^{2}+15 \,{\mathrm e}^{3}+x \right )-\ln \relax (x )\) | \(21\) |
risch | \(\ln \left (x^{3}+3 x^{2}+15 \,{\mathrm e}^{3}+x \right )-\ln \relax (x )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 0.91 \begin {gather*} \log \left (x^{3} + 3 \, x^{2} + x + 15 \, e^{3}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.37, size = 20, normalized size = 0.91 \begin {gather*} \ln \left (x^3+3\,x^2+x+15\,{\mathrm {e}}^3\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.73, size = 19, normalized size = 0.86 \begin {gather*} - \log {\relax (x )} + \log {\left (x^{3} + 3 x^{2} + x + 15 e^{3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________