Optimal. Leaf size=28 \[ e^{\frac {\left (-x+x^4\right ) \left (2+e^x+\log (\log (5))\right )}{7 (5+x)}} x \]
________________________________________________________________________________________
Rubi [F] time = 27.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-2 x+2 x^4+e^x \left (-x+x^4\right )+\left (-x+x^4\right ) \log (\log (5))}{35+7 x}\right ) \left (175+60 x+7 x^2+40 x^4+6 x^5+e^x \left (-5 x-5 x^2-x^3+20 x^4+8 x^5+x^6\right )+\left (-5 x+20 x^4+3 x^5\right ) \log (\log (5))\right )}{175+70 x+7 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-2 x+2 x^4+e^x \left (-x+x^4\right )+\left (-x+x^4\right ) \log (\log (5))}{35+7 x}\right ) \left (175+60 x+7 x^2+40 x^4+6 x^5+e^x \left (-5 x-5 x^2-x^3+20 x^4+8 x^5+x^6\right )+\left (-5 x+20 x^4+3 x^5\right ) \log (\log (5))\right )}{7 (5+x)^2} \, dx\\ &=\frac {1}{7} \int \frac {\exp \left (\frac {-2 x+2 x^4+e^x \left (-x+x^4\right )+\left (-x+x^4\right ) \log (\log (5))}{35+7 x}\right ) \left (175+60 x+7 x^2+40 x^4+6 x^5+e^x \left (-5 x-5 x^2-x^3+20 x^4+8 x^5+x^6\right )+\left (-5 x+20 x^4+3 x^5\right ) \log (\log (5))\right )}{(5+x)^2} \, dx\\ &=\frac {1}{7} \int \frac {\exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) \left (175+60 x+7 x^2+40 x^4+6 x^5+e^x \left (-5 x-5 x^2-x^3+20 x^4+8 x^5+x^6\right )+\left (-5 x+20 x^4+3 x^5\right ) \log (\log (5))\right )}{(5+x)^2} \, dx\\ &=\frac {1}{7} \int \left (\frac {175 \exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right )}{(5+x)^2}+\frac {60 \exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x}{(5+x)^2}+\frac {7 \exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x^2}{(5+x)^2}+\frac {40 \exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x^4}{(5+x)^2}+\frac {6 \exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x^5}{(5+x)^2}+\frac {\exp \left (x+\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x \left (-5-5 x-x^2+20 x^3+8 x^4+x^5\right )}{(5+x)^2}+\frac {\exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x \left (-5+20 x^3+3 x^4\right ) \log (\log (5))}{(5+x)^2}\right ) \, dx\\ &=\frac {1}{7} \int \frac {\exp \left (x+\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x \left (-5-5 x-x^2+20 x^3+8 x^4+x^5\right )}{(5+x)^2} \, dx+\frac {6}{7} \int \frac {\exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x^5}{(5+x)^2} \, dx+\frac {40}{7} \int \frac {\exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x^4}{(5+x)^2} \, dx+\frac {60}{7} \int \frac {\exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x}{(5+x)^2} \, dx+25 \int \frac {\exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right )}{(5+x)^2} \, dx+\frac {1}{7} \log (\log (5)) \int \frac {\exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x \left (-5+20 x^3+3 x^4\right )}{(5+x)^2} \, dx+\int \frac {\exp \left (\frac {x \left (-1+x^3\right ) \left (e^x+2 \left (1+\frac {1}{2} \log (\log (5))\right )\right )}{35+7 x}\right ) x^2}{(5+x)^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 42, normalized size = 1.50 \begin {gather*} e^{\frac {\left (2+e^x\right ) x \left (-1+x^3\right )}{7 (5+x)}} x \log ^{\frac {x \left (-1+x^3\right )}{7 (5+x)}}(5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 40, normalized size = 1.43 \begin {gather*} x e^{\left (\frac {2 \, x^{4} + {\left (x^{4} - x\right )} e^{x} + {\left (x^{4} - x\right )} \log \left (\log \relax (5)\right ) - 2 \, x}{7 \, {\left (x + 5\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 28, normalized size = 1.00
method | result | size |
risch | \(x \,{\mathrm e}^{\frac {\left (2+{\mathrm e}^{x}+\ln \left (\ln \relax (5)\right )\right ) \left (x^{2}+x +1\right ) x \left (x -1\right )}{7 x +35}}\) | \(28\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {\left (x^{4}-x \right ) \ln \left (\ln \relax (5)\right )+\left (x^{4}-x \right ) {\mathrm e}^{x}+2 x^{4}-2 x}{7 x +35}}+5 x \,{\mathrm e}^{\frac {\left (x^{4}-x \right ) \ln \left (\ln \relax (5)\right )+\left (x^{4}-x \right ) {\mathrm e}^{x}+2 x^{4}-2 x}{7 x +35}}}{5+x}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{7} \, \int \frac {{\left (6 \, x^{5} + 40 \, x^{4} + 7 \, x^{2} + {\left (x^{6} + 8 \, x^{5} + 20 \, x^{4} - x^{3} - 5 \, x^{2} - 5 \, x\right )} e^{x} + {\left (3 \, x^{5} + 20 \, x^{4} - 5 \, x\right )} \log \left (\log \relax (5)\right ) + 60 \, x + 175\right )} e^{\left (\frac {2 \, x^{4} + {\left (x^{4} - x\right )} e^{x} + {\left (x^{4} - x\right )} \log \left (\log \relax (5)\right ) - 2 \, x}{7 \, {\left (x + 5\right )}}\right )}}{x^{2} + 10 \, x + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.51, size = 73, normalized size = 2.61 \begin {gather*} \frac {x\,{\mathrm {e}}^{\frac {x^4\,{\mathrm {e}}^x}{7\,x+35}}\,{\mathrm {e}}^{\frac {2\,x^4}{7\,x+35}}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^x}{7\,x+35}}\,{\mathrm {e}}^{-\frac {2\,x}{7\,x+35}}}{{\ln \relax (5)}^{\frac {x-x^4}{7\,\left (x+5\right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 17.06, size = 34, normalized size = 1.21 \begin {gather*} x e^{\frac {2 x^{4} - 2 x + \left (x^{4} - x\right ) e^{x} + \left (x^{4} - x\right ) \log {\left (\log {\relax (5 )} \right )}}{7 x + 35}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________