Optimal. Leaf size=33 \[ \frac {3+\log (3)-\log \left (\frac {x}{6+3 e^{-2 e^{-x}}-x^2}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 6.35, antiderivative size = 52, normalized size of antiderivative = 1.58, number of steps used = 24, number of rules used = 7, integrand size = 132, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {6742, 6688, 6725, 453, 206, 2551, 207} \begin {gather*} -\frac {\log \left (\frac {e^{2 e^{-x}} x}{e^{2 e^{-x}} \left (6-x^2\right )+3}\right )}{x}-\frac {1}{x}+\frac {4+\log (3)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 207
Rule 453
Rule 2551
Rule 6688
Rule 6725
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {6 e^{-x}}{x \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}+\frac {-12 \left (1+\frac {\log (3)}{4}\right )-24 e^{2 e^{-x}} \left (1+\frac {\log (3)}{4}\right )+2 e^{2 e^{-x}} x^2 \left (1+\frac {\log (3)}{2}\right )+3 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )+6 e^{2 e^{-x}} \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )-e^{2 e^{-x}} x^2 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{x^2 \left (3+6 e^{2 e^{-x}}-e^{2 e^{-x}} x^2\right )}\right ) \, dx\\ &=-\left (6 \int \frac {e^{-x}}{x \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx\right )+\int \frac {-12 \left (1+\frac {\log (3)}{4}\right )-24 e^{2 e^{-x}} \left (1+\frac {\log (3)}{4}\right )+2 e^{2 e^{-x}} x^2 \left (1+\frac {\log (3)}{2}\right )+3 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )+6 e^{2 e^{-x}} \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )-e^{2 e^{-x}} x^2 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{x^2 \left (3+6 e^{2 e^{-x}}-e^{2 e^{-x}} x^2\right )} \, dx\\ &=-\left (6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx\right )+\int \frac {-12 \left (1+\frac {\log (3)}{4}\right )-e^{2 e^{-x}} \left (24-x^2 (2+\log (3))+\log (729)\right )-\left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right ) \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{x^2 \left (3-e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx\\ &=-\left (6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx\right )+\int \left (\frac {6}{\left (-6+x^2\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}+\frac {-24 \left (1+\frac {\log (3)}{4}\right )+2 x^2 \left (1+\frac {\log (3)}{2}\right )+6 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )-x^2 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{x^2 \left (6-x^2\right )}\right ) \, dx\\ &=6 \int \frac {1}{\left (-6+x^2\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx+\int \frac {-24 \left (1+\frac {\log (3)}{4}\right )+2 x^2 \left (1+\frac {\log (3)}{2}\right )+6 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )-x^2 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{x^2 \left (6-x^2\right )} \, dx\\ &=-\left (6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx\right )+6 \int \left (-\frac {1}{2 \sqrt {6} \left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}-\frac {1}{2 \sqrt {6} \left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}\right ) \, dx+\int \frac {x^2 (2+\log (3))-6 (4+\log (3))-\left (-6+x^2\right ) \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{x^2 \left (6-x^2\right )} \, dx\\ &=-\left (6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx\right )-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx+\int \left (\frac {x^2 (2+\log (3))-6 (4+\log (3))}{x^2 \left (6-x^2\right )}+\frac {\log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{x^2}\right ) \, dx\\ &=-\left (6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx\right )-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx+\int \frac {x^2 (2+\log (3))-6 (4+\log (3))}{x^2 \left (6-x^2\right )} \, dx+\int \frac {\log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{x^2} \, dx\\ &=\frac {4+\log (3)}{x}-\frac {\log \left (\frac {e^{2 e^{-x}} x}{3+e^{2 e^{-x}} \left (6-x^2\right )}\right )}{x}-2 \int \frac {1}{6-x^2} \, dx-6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx+\int \frac {e^{-x} \left (3 e^x-6 x+e^{2 e^{-x}+x} \left (6+x^2\right )\right )}{x^2 \left (3-e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx\\ &=-\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {x}{\sqrt {6}}\right )+\frac {4+\log (3)}{x}-\frac {\log \left (\frac {e^{2 e^{-x}} x}{3+e^{2 e^{-x}} \left (6-x^2\right )}\right )}{x}-6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx+\int \left (\frac {6 e^{-x}}{x \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}-\frac {3+6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2}{x^2 \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}\right ) \, dx\\ &=-\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {x}{\sqrt {6}}\right )+\frac {4+\log (3)}{x}-\frac {\log \left (\frac {e^{2 e^{-x}} x}{3+e^{2 e^{-x}} \left (6-x^2\right )}\right )}{x}+6 \int \frac {e^{-x}}{x \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-6 \int \frac {e^{-x}}{x \left (-3+e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\int \frac {3+6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2}{x^2 \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx\\ &=-\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {x}{\sqrt {6}}\right )+\frac {4+\log (3)}{x}-\frac {\log \left (\frac {e^{2 e^{-x}} x}{3+e^{2 e^{-x}} \left (6-x^2\right )}\right )}{x}-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\int \frac {-3-e^{2 e^{-x}} \left (6+x^2\right )}{x^2 \left (3-e^{2 e^{-x}} \left (-6+x^2\right )\right )} \, dx\\ &=-\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {x}{\sqrt {6}}\right )+\frac {4+\log (3)}{x}-\frac {\log \left (\frac {e^{2 e^{-x}} x}{3+e^{2 e^{-x}} \left (6-x^2\right )}\right )}{x}-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\int \left (\frac {6+x^2}{x^2 \left (-6+x^2\right )}+\frac {6}{\left (-6+x^2\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}\right ) \, dx\\ &=-\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {x}{\sqrt {6}}\right )+\frac {4+\log (3)}{x}-\frac {\log \left (\frac {e^{2 e^{-x}} x}{3+e^{2 e^{-x}} \left (6-x^2\right )}\right )}{x}-6 \int \frac {1}{\left (-6+x^2\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\int \frac {6+x^2}{x^2 \left (-6+x^2\right )} \, dx\\ &=-\frac {1}{x}-\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {x}{\sqrt {6}}\right )+\frac {4+\log (3)}{x}-\frac {\log \left (\frac {e^{2 e^{-x}} x}{3+e^{2 e^{-x}} \left (6-x^2\right )}\right )}{x}-2 \int \frac {1}{-6+x^2} \, dx-6 \int \left (-\frac {1}{2 \sqrt {6} \left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}-\frac {1}{2 \sqrt {6} \left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )}\right ) \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx-\sqrt {\frac {3}{2}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (-3-6 e^{2 e^{-x}}+e^{2 e^{-x}} x^2\right )} \, dx\\ &=-\frac {1}{x}+\frac {4+\log (3)}{x}-\frac {\log \left (\frac {e^{2 e^{-x}} x}{3+e^{2 e^{-x}} \left (6-x^2\right )}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 45, normalized size = 1.36 \begin {gather*} \frac {18+\log (729)-6 \log \left (-\frac {e^{2 e^{-x}} x}{-3+e^{2 e^{-x}} \left (-6+x^2\right )}\right )}{6 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 51, normalized size = 1.55 \begin {gather*} \frac {\log \relax (3) - \log \left (-\frac {x e^{\left ({\left (x e^{x} + 2\right )} e^{\left (-x\right )}\right )}}{{\left (x^{2} - 6\right )} e^{\left ({\left (x e^{x} + 2\right )} e^{\left (-x\right )}\right )} - 3 \, e^{x}}\right ) + 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.20, size = 60, normalized size = 1.82 \begin {gather*} -\frac {2 \, x {\rm Ei}\left (-x\right ) + 2 \, e^{\left (-x\right )} - \log \relax (3) - \log \left (x^{2} e^{\left (2 \, e^{\left (-x\right )}\right )} - 6 \, e^{\left (2 \, e^{\left (-x\right )}\right )} - 3\right ) + \log \left (-x\right ) - 3}{x} + 2 \, {\rm Ei}\left (-x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.38, size = 587, normalized size = 17.79
method | result | size |
risch | \(-\frac {\ln \left ({\mathrm e}^{2 \,{\mathrm e}^{-x}}\right )}{x}+\frac {-i \pi \,\mathrm {csgn}\left (\frac {i {\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right ) \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 \,{\mathrm e}^{-x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )-i \pi \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )^{3}+2 i \pi \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )^{2}-i \pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )^{2}-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 \,{\mathrm e}^{-x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right ) \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}}{{\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3}\right )-2 i \pi +6+2 \ln \relax (3)-2 \ln \relax (x )+2 \ln \left ({\mathrm e}^{2 \,{\mathrm e}^{-x}} x^{2}-6 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}-3\right )}{2 x}\) | \(587\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 38, normalized size = 1.15 \begin {gather*} -\frac {2 \, e^{\left (-x\right )} - \log \relax (3) - \log \left (-{\left (x^{2} - 6\right )} e^{\left (2 \, e^{\left (-x\right )}\right )} + 3\right ) + \log \relax (x) - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.52, size = 36, normalized size = 1.09 \begin {gather*} -\frac {\ln \left (-\frac {x\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-x}}}{3\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^{-x}}\,\left (x^2-6\right )-3\right )}\right )-3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.94, size = 36, normalized size = 1.09 \begin {gather*} - \frac {\log {\left (- \frac {x e^{2 e^{- x}}}{\left (x^{2} - 6\right ) e^{2 e^{- x}} - 3} \right )}}{x} - \frac {-3 - \log {\relax (3 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________