Optimal. Leaf size=26 \[ \frac {4 x^2}{2+x \left (1+\frac {e \left (-4 e^x+\log (x)\right )}{x^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 e x^2+16 x^3+4 x^4+e^{1+x} \left (-48 x^2+16 x^3\right )+12 e x^2 \log (x)}{16 e^{2+2 x}+4 x^2+4 x^3+x^4+e^{1+x} \left (-16 x-8 x^2\right )+\left (-8 e^{2+x}+e \left (4 x+2 x^2\right )\right ) \log (x)+e^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^2 \left (-e+4 e^{1+x} (-3+x)+x (4+x)+3 e \log (x)\right )}{\left (4 e^{1+x}-x (2+x)-e \log (x)\right )^2} \, dx\\ &=4 \int \frac {x^2 \left (-e+4 e^{1+x} (-3+x)+x (4+x)+3 e \log (x)\right )}{\left (4 e^{1+x}-x (2+x)-e \log (x)\right )^2} \, dx\\ &=4 \int \left (-\frac {(-3+x) x^2}{-4 e^{1+x}+2 x+x^2+e \log (x)}+\frac {x^2 \left (-e-2 x+x^3+e x \log (x)\right )}{\left (-4 e^{1+x}+2 x+x^2+e \log (x)\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {(-3+x) x^2}{-4 e^{1+x}+2 x+x^2+e \log (x)} \, dx\right )+4 \int \frac {x^2 \left (-e-2 x+x^3+e x \log (x)\right )}{\left (-4 e^{1+x}+2 x+x^2+e \log (x)\right )^2} \, dx\\ &=4 \int \left (-\frac {e x^2}{\left (4 e^{1+x}-2 x-x^2-e \log (x)\right )^2}-\frac {2 x^3}{\left (-4 e^{1+x}+2 x+x^2+e \log (x)\right )^2}+\frac {x^5}{\left (-4 e^{1+x}+2 x+x^2+e \log (x)\right )^2}+\frac {e x^3 \log (x)}{\left (-4 e^{1+x}+2 x+x^2+e \log (x)\right )^2}\right ) \, dx-4 \int \left (-\frac {3 x^2}{-4 e^{1+x}+2 x+x^2+e \log (x)}+\frac {x^3}{-4 e^{1+x}+2 x+x^2+e \log (x)}\right ) \, dx\\ &=4 \int \frac {x^5}{\left (-4 e^{1+x}+2 x+x^2+e \log (x)\right )^2} \, dx-4 \int \frac {x^3}{-4 e^{1+x}+2 x+x^2+e \log (x)} \, dx-8 \int \frac {x^3}{\left (-4 e^{1+x}+2 x+x^2+e \log (x)\right )^2} \, dx+12 \int \frac {x^2}{-4 e^{1+x}+2 x+x^2+e \log (x)} \, dx-(4 e) \int \frac {x^2}{\left (4 e^{1+x}-2 x-x^2-e \log (x)\right )^2} \, dx+(4 e) \int \frac {x^3 \log (x)}{\left (-4 e^{1+x}+2 x+x^2+e \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.58, size = 25, normalized size = 0.96 \begin {gather*} \frac {4 x^3}{-4 e^{1+x}+2 x+x^2+e \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 31, normalized size = 1.19 \begin {gather*} \frac {4 \, x^{3} e}{{\left (x^{2} + 2 \, x\right )} e + e^{2} \log \relax (x) - 4 \, e^{\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 25, normalized size = 0.96 \begin {gather*} \frac {4 \, x^{3}}{x^{2} + e \log \relax (x) + 2 \, x - 4 \, e^{\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 1.12
method | result | size |
risch | \(-\frac {4 x^{3}}{4 \,{\mathrm e}^{x +1}-{\mathrm e} \ln \relax (x )-x^{2}-2 x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 25, normalized size = 0.96 \begin {gather*} \frac {4 \, x^{3}}{x^{2} + e \log \relax (x) + 2 \, x - 4 \, e^{\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {16\,x^3-4\,x^2\,\mathrm {e}-{\mathrm {e}}^{x+1}\,\left (48\,x^2-16\,x^3\right )+4\,x^4+12\,x^2\,\mathrm {e}\,\ln \relax (x)}{16\,{\mathrm {e}}^{2\,x+2}+{\mathrm {e}}^2\,{\ln \relax (x)}^2-{\mathrm {e}}^{x+1}\,\left (8\,x^2+16\,x\right )-\ln \relax (x)\,\left (8\,{\mathrm {e}}^{x+2}-\mathrm {e}\,\left (2\,x^2+4\,x\right )\right )+4\,x^2+4\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 27, normalized size = 1.04 \begin {gather*} - \frac {4 x^{3}}{- x^{2} - 2 x + 4 e e^{x} - e \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________