Optimal. Leaf size=26 \[ 3+\frac {e^x}{4}-\frac {x^3}{\left (-4+e^{-1+x}-3 x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48 x^2+12 x^3+e^{-1+x} \left (-12 x^2+8 x^3\right )+e^x \left (-64+e^{-3+3 x}+e^{-2+2 x} (-12-9 x)-144 x-108 x^2-27 x^3+e^{-1+x} \left (48+72 x+27 x^2\right )\right )}{-256+4 e^{-3+3 x}+e^{-2+2 x} (-48-36 x)-576 x-432 x^2-108 x^3+e^{-1+x} \left (192+288 x+108 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4 x}+12 e^3 x^2 (4+x)+4 e^{2+x} x^2 (-3+2 x)-3 e^{1+3 x} (4+3 x)+3 e^{2+2 x} (4+3 x)^2-e^{3+x} (4+3 x)^3}{4 \left (e^x-e (4+3 x)\right )^3} \, dx\\ &=\frac {1}{4} \int \frac {e^{4 x}+12 e^3 x^2 (4+x)+4 e^{2+x} x^2 (-3+2 x)-3 e^{1+3 x} (4+3 x)+3 e^{2+2 x} (4+3 x)^2-e^{3+x} (4+3 x)^3}{\left (e^x-e (4+3 x)\right )^3} \, dx\\ &=\frac {1}{4} \int \left (e^x-\frac {8 e^3 x^3 (1+3 x)}{\left (4 e-e^x+3 e x\right )^3}+\frac {4 e^2 x^2 (-3+2 x)}{\left (4 e-e^x+3 e x\right )^2}\right ) \, dx\\ &=\frac {\int e^x \, dx}{4}+e^2 \int \frac {x^2 (-3+2 x)}{\left (4 e-e^x+3 e x\right )^2} \, dx-\left (2 e^3\right ) \int \frac {x^3 (1+3 x)}{\left (4 e-e^x+3 e x\right )^3} \, dx\\ &=\frac {e^x}{4}+e^2 \int \left (-\frac {3 x^2}{\left (4 e-e^x+3 e x\right )^2}+\frac {2 x^3}{\left (4 e-e^x+3 e x\right )^2}\right ) \, dx-\left (2 e^3\right ) \int \left (\frac {x^3}{\left (4 e-e^x+3 e x\right )^3}+\frac {3 x^4}{\left (4 e-e^x+3 e x\right )^3}\right ) \, dx\\ &=\frac {e^x}{4}+\left (2 e^2\right ) \int \frac {x^3}{\left (4 e-e^x+3 e x\right )^2} \, dx-\left (3 e^2\right ) \int \frac {x^2}{\left (4 e-e^x+3 e x\right )^2} \, dx-\left (2 e^3\right ) \int \frac {x^3}{\left (4 e-e^x+3 e x\right )^3} \, dx-\left (6 e^3\right ) \int \frac {x^4}{\left (4 e-e^x+3 e x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 29, normalized size = 1.12 \begin {gather*} \frac {1}{4} \left (e^x-\frac {4 e^2 x^3}{\left (-4 e+e^x-3 e x\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 76, normalized size = 2.92 \begin {gather*} -\frac {4 \, x^{3} e^{2} + 2 \, {\left (3 \, x + 4\right )} e^{\left (2 \, x + 1\right )} - {\left (9 \, x^{2} + 24 \, x + 16\right )} e^{\left (x + 2\right )} - e^{\left (3 \, x\right )}}{4 \, {\left ({\left (9 \, x^{2} + 24 \, x + 16\right )} e^{2} - 2 \, {\left (3 \, x + 4\right )} e^{\left (x + 1\right )} + e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 91, normalized size = 3.50 \begin {gather*} -\frac {4 \, x^{3} e^{2} - 9 \, x^{2} e^{\left (x + 2\right )} + 6 \, x e^{\left (2 \, x + 1\right )} - 24 \, x e^{\left (x + 2\right )} - e^{\left (3 \, x\right )} + 8 \, e^{\left (2 \, x + 1\right )} - 16 \, e^{\left (x + 2\right )}}{4 \, {\left (9 \, x^{2} e^{2} + 24 \, x e^{2} - 6 \, x e^{\left (x + 1\right )} + 16 \, e^{2} + e^{\left (2 \, x\right )} - 8 \, e^{\left (x + 1\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.48, size = 22, normalized size = 0.85
method | result | size |
risch | \(\frac {{\mathrm e}^{x}}{4}-\frac {x^{3}}{\left ({\mathrm e}^{x -1}-4-3 x \right )^{2}}\) | \(22\) |
norman | \(\frac {\left (-12 \,{\mathrm e}^{4} {\mathrm e}^{x}+18 x^{2} {\mathrm e}^{5}+48 x \,{\mathrm e}^{5}-6 x \,{\mathrm e}^{4} {\mathrm e}^{x}-x^{3} {\mathrm e}^{4}+\frac {{\mathrm e}^{2} {\mathrm e}^{3 x}}{4}-\frac {3 x \,{\mathrm e}^{3} {\mathrm e}^{2 x}}{2}+\frac {9 x^{2} {\mathrm e}^{4} {\mathrm e}^{x}}{4}+32 \,{\mathrm e}^{5}\right ) {\mathrm e}^{-2}}{\left (3 x \,{\mathrm e}+4 \,{\mathrm e}-{\mathrm e}^{x}\right )^{2}}\) | \(103\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 90, normalized size = 3.46 \begin {gather*} -\frac {4 \, x^{3} e^{2} + 2 \, {\left (3 \, x e + 4 \, e\right )} e^{\left (2 \, x\right )} - {\left (9 \, x^{2} e^{2} + 24 \, x e^{2} + 16 \, e^{2}\right )} e^{x} - e^{\left (3 \, x\right )}}{4 \, {\left (9 \, x^{2} e^{2} + 24 \, x e^{2} - 2 \, {\left (3 \, x e + 4 \, e\right )} e^{x} + 16 \, e^{2} + e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (144\,x-{\mathrm {e}}^{3\,x-3}-{\mathrm {e}}^{x-1}\,\left (27\,x^2+72\,x+48\right )+{\mathrm {e}}^{2\,x-2}\,\left (9\,x+12\right )+108\,x^2+27\,x^3+64\right )+{\mathrm {e}}^{x-1}\,\left (12\,x^2-8\,x^3\right )-48\,x^2-12\,x^3}{576\,x-4\,{\mathrm {e}}^{3\,x-3}-{\mathrm {e}}^{x-1}\,\left (108\,x^2+288\,x+192\right )+{\mathrm {e}}^{2\,x-2}\,\left (36\,x+48\right )+432\,x^2+108\,x^3+256} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________