Optimal. Leaf size=24 \[ \frac {1}{5} \left (5-x \left (-\left (e^4-e^x\right )^2+x\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 60, normalized size of antiderivative = 2.50, number of steps used = 6, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 2176, 2194} \begin {gather*} -\frac {x^2}{5}+\frac {e^8 x}{5}-\frac {e^{2 x}}{10}+\frac {2 e^{x+4}}{5}-\frac {2}{5} e^{x+4} (x+1)+\frac {1}{10} e^{2 x} (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (e^8+e^{4+x} (-2-2 x)-2 x+e^{2 x} (1+2 x)\right ) \, dx\\ &=\frac {e^8 x}{5}-\frac {x^2}{5}+\frac {1}{5} \int e^{4+x} (-2-2 x) \, dx+\frac {1}{5} \int e^{2 x} (1+2 x) \, dx\\ &=\frac {e^8 x}{5}-\frac {x^2}{5}-\frac {2}{5} e^{4+x} (1+x)+\frac {1}{10} e^{2 x} (1+2 x)-\frac {1}{5} \int e^{2 x} \, dx+\frac {2}{5} \int e^{4+x} \, dx\\ &=-\frac {e^{2 x}}{10}+\frac {2 e^{4+x}}{5}+\frac {e^8 x}{5}-\frac {x^2}{5}-\frac {2}{5} e^{4+x} (1+x)+\frac {1}{10} e^{2 x} (1+2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 30, normalized size = 1.25 \begin {gather*} \frac {1}{5} \left (e^8 x+e^{2 x} x-2 e^{4+x} x-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 32, normalized size = 1.33 \begin {gather*} -\frac {1}{5} \, {\left (x^{2} e^{8} - x e^{16} - x e^{\left (2 \, x + 8\right )} + 2 \, x e^{\left (x + 12\right )}\right )} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 1.04 \begin {gather*} -\frac {1}{5} \, x^{2} + \frac {1}{5} \, x e^{8} + \frac {1}{5} \, x e^{\left (2 \, x\right )} - \frac {2}{5} \, x e^{\left (x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.08
method | result | size |
risch | \(-\frac {x^{2}}{5}+\frac {x \,{\mathrm e}^{8}}{5}+\frac {x \,{\mathrm e}^{2 x}}{5}-\frac {2 x \,{\mathrm e}^{4+x}}{5}\) | \(26\) |
default | \(-\frac {x^{2}}{5}+\frac {x \,{\mathrm e}^{8}}{5}+\frac {x \,{\mathrm e}^{2 x}}{5}-\frac {2 x \,{\mathrm e}^{4} {\mathrm e}^{x}}{5}\) | \(28\) |
norman | \(-\frac {x^{2}}{5}+\frac {x \,{\mathrm e}^{8}}{5}+\frac {x \,{\mathrm e}^{2 x}}{5}-\frac {2 x \,{\mathrm e}^{4} {\mathrm e}^{x}}{5}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 25, normalized size = 1.04 \begin {gather*} -\frac {1}{5} \, x^{2} + \frac {1}{5} \, x e^{8} + \frac {1}{5} \, x e^{\left (2 \, x\right )} - \frac {2}{5} \, x e^{\left (x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 21, normalized size = 0.88 \begin {gather*} -\frac {x\,\left (x-{\mathrm {e}}^{2\,x}+2\,{\mathrm {e}}^{x+4}-{\mathrm {e}}^8\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.13, size = 31, normalized size = 1.29 \begin {gather*} - \frac {x^{2}}{5} + \frac {x e^{2 x}}{5} - \frac {2 x e^{4} e^{x}}{5} + \frac {x e^{8}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________