Optimal. Leaf size=23 \[ e^{6-e^{6-x}-e^x-\frac {x}{4}} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 2, number of rules used = 2, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{4} \left (-x-4 e^{6-x}-4 e^x+24\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^{\frac {1}{4} \left (24-4 e^{6-x}-4 e^x-x\right )} \left (-1+4 e^{6-x}-4 e^x\right ) \, dx\\ &=e^{\frac {1}{4} \left (24-4 e^{6-x}-4 e^x-x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 23, normalized size = 1.00 \begin {gather*} e^{6-e^{6-x}-e^x-\frac {x}{4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 24, normalized size = 1.04 \begin {gather*} e^{\left (-\frac {1}{4} \, {\left ({\left (x - 24\right )} e^{x} + 4 \, e^{6} + 4 \, e^{\left (2 \, x\right )}\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 18, normalized size = 0.78 \begin {gather*} e^{\left (-\frac {1}{4} \, x - e^{x} - e^{\left (-x + 6\right )} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 19, normalized size = 0.83
method | result | size |
norman | \({\mathrm e}^{-{\mathrm e}^{x}-{\mathrm e}^{-x} {\mathrm e}^{6}-\frac {x}{4}+6}\) | \(19\) |
risch | \({\mathrm e}^{-{\mathrm e}^{x}-{\mathrm e}^{-x +6}-\frac {x}{4}+6}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 18, normalized size = 0.78 \begin {gather*} e^{\left (-\frac {1}{4} \, x - e^{x} - e^{\left (-x + 6\right )} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.14, size = 21, normalized size = 0.91 \begin {gather*} {\mathrm {e}}^{-\frac {x}{4}}\,{\mathrm {e}}^6\,{\mathrm {e}}^{-{\mathrm {e}}^{-x}\,{\mathrm {e}}^6}\,{\mathrm {e}}^{-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 15, normalized size = 0.65 \begin {gather*} e^{- \frac {x}{4} - e^{x} + 6 - e^{6} e^{- x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________