Optimal. Leaf size=26 \[ x+\log ^2\left (x+\frac {x}{x+e^{-x} \log (4)}\right )-\log (\log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 9.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x-x^2+\left (x^2+x^3\right ) \log (x)+e^{-2 x} \log ^2(4) (-1+x \log (x))+e^{-x} \log (4) \left (-1-2 x+\left (x+2 x^2\right ) \log (x)\right )+\left (2 x^2 \log (x)+e^{-x} (2+6 x) \log (4) \log (x)+2 e^{-2 x} \log ^2(4) \log (x)\right ) \log \left (\frac {x+x^2+e^{-x} x \log (4)}{x+e^{-x} \log (4)}\right )}{\left (x^2+x^3\right ) \log (x)+e^{-x} \left (x+2 x^2\right ) \log (4) \log (x)+e^{-2 x} x \log ^2(4) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 (1+x) \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{x \left (e^x x+\log (4)\right )}-\frac {2 (2+x) \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{(1+x) \left (e^x+e^x x+\log (4)\right )}+\frac {-1-x+x \log (x)+x^2 \log (x)+2 x \log (x) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{x (1+x) \log (x)}\right ) \, dx\\ &=(2 \log (4)) \int \frac {(1+x) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{x \left (e^x x+\log (4)\right )} \, dx-(2 \log (4)) \int \frac {(2+x) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{(1+x) \left (e^x+e^x x+\log (4)\right )} \, dx+\int \frac {-1-x+x \log (x)+x^2 \log (x)+2 x \log (x) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{x (1+x) \log (x)} \, dx\\ &=(2 \log (4)) \int \frac {\left (e^{2 x} x^2+e^x (1+3 x) \log (4)+\log ^2(4)\right ) \left (\int \frac {1}{e^x (1+x)+\log (4)} \, dx+\int \frac {1}{(1+x) \left (e^x (1+x)+\log (4)\right )} \, dx\right )}{x \left (e^x x+\log (4)\right ) \left (e^x (1+x)+\log (4)\right )} \, dx-(2 \log (4)) \int \frac {\left (e^{2 x} x^2+e^x (1+3 x) \log (4)+\log ^2(4)\right ) \left (\int \frac {1}{e^x x+\log (4)} \, dx+\int \frac {1}{e^x x^2+x \log (4)} \, dx\right )}{x \left (e^x x+\log (4)\right ) \left (e^x (1+x)+\log (4)\right )} \, dx+\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{e^x x+\log (4)} \, dx+\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{x \left (e^x x+\log (4)\right )} \, dx-\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{e^x+e^x x+\log (4)} \, dx-\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{(1+x) \left (e^x+e^x x+\log (4)\right )} \, dx+\int \left (\frac {-1+x \log (x)}{x \log (x)}+\frac {2 \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{1+x}\right ) \, dx\\ &=2 \int \frac {\log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{1+x} \, dx+(2 \log (4)) \int \left (\frac {\int \frac {1}{e^x (1+x)+\log (4)} \, dx+\int \frac {1}{(1+x) \left (e^x (1+x)+\log (4)\right )} \, dx}{1+x}+\frac {(1+x) \log (4) \left (\int \frac {1}{e^x (1+x)+\log (4)} \, dx+\int \frac {1}{(1+x) \left (e^x (1+x)+\log (4)\right )} \, dx\right )}{x \left (e^x x+\log (4)\right )}-\frac {(2+x) \log (4) \left (\int \frac {1}{e^x (1+x)+\log (4)} \, dx+\int \frac {1}{(1+x) \left (e^x (1+x)+\log (4)\right )} \, dx\right )}{(1+x) \left (e^x+e^x x+\log (4)\right )}\right ) \, dx-(2 \log (4)) \int \left (\frac {\int \frac {1}{e^x x+\log (4)} \, dx+\int \frac {1}{e^x x^2+x \log (4)} \, dx}{1+x}+\frac {(1+x) \log (4) \left (\int \frac {1}{e^x x+\log (4)} \, dx+\int \frac {1}{e^x x^2+x \log (4)} \, dx\right )}{x \left (e^x x+\log (4)\right )}-\frac {(2+x) \log (4) \left (\int \frac {1}{e^x x+\log (4)} \, dx+\int \frac {1}{e^x x^2+x \log (4)} \, dx\right )}{(1+x) \left (e^x+e^x x+\log (4)\right )}\right ) \, dx+\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{e^x x+\log (4)} \, dx+\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{x \left (e^x x+\log (4)\right )} \, dx-\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{e^x+e^x x+\log (4)} \, dx-\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{(1+x) \left (e^x+e^x x+\log (4)\right )} \, dx+\int \frac {-1+x \log (x)}{x \log (x)} \, dx\\ &=2 \int \frac {\log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )}{1+x} \, dx+(2 \log (4)) \int \frac {\int \frac {1}{e^x (1+x)+\log (4)} \, dx+\int \frac {1}{(1+x) \left (e^x (1+x)+\log (4)\right )} \, dx}{1+x} \, dx-(2 \log (4)) \int \frac {\int \frac {1}{e^x x+\log (4)} \, dx+\int \frac {1}{e^x x^2+x \log (4)} \, dx}{1+x} \, dx+\left (2 \log ^2(4)\right ) \int \frac {(1+x) \left (\int \frac {1}{e^x (1+x)+\log (4)} \, dx+\int \frac {1}{(1+x) \left (e^x (1+x)+\log (4)\right )} \, dx\right )}{x \left (e^x x+\log (4)\right )} \, dx-\left (2 \log ^2(4)\right ) \int \frac {(2+x) \left (\int \frac {1}{e^x (1+x)+\log (4)} \, dx+\int \frac {1}{(1+x) \left (e^x (1+x)+\log (4)\right )} \, dx\right )}{(1+x) \left (e^x+e^x x+\log (4)\right )} \, dx-\left (2 \log ^2(4)\right ) \int \frac {(1+x) \left (\int \frac {1}{e^x x+\log (4)} \, dx+\int \frac {1}{e^x x^2+x \log (4)} \, dx\right )}{x \left (e^x x+\log (4)\right )} \, dx+\left (2 \log ^2(4)\right ) \int \frac {(2+x) \left (\int \frac {1}{e^x x+\log (4)} \, dx+\int \frac {1}{e^x x^2+x \log (4)} \, dx\right )}{(1+x) \left (e^x+e^x x+\log (4)\right )} \, dx+\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{e^x x+\log (4)} \, dx+\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{x \left (e^x x+\log (4)\right )} \, dx-\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{e^x+e^x x+\log (4)} \, dx-\left (2 \log (4) \log \left (\frac {x \left (e^x (1+x)+\log (4)\right )}{e^x x+\log (4)}\right )\right ) \int \frac {1}{(1+x) \left (e^x+e^x x+\log (4)\right )} \, dx+\int \left (1-\frac {1}{x \log (x)}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.84, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-x-x^2+\left (x^2+x^3\right ) \log (x)+e^{-2 x} \log ^2(4) (-1+x \log (x))+e^{-x} \log (4) \left (-1-2 x+\left (x+2 x^2\right ) \log (x)\right )+\left (2 x^2 \log (x)+e^{-x} (2+6 x) \log (4) \log (x)+2 e^{-2 x} \log ^2(4) \log (x)\right ) \log \left (\frac {x+x^2+e^{-x} x \log (4)}{x+e^{-x} \log (4)}\right )}{\left (x^2+x^3\right ) \log (x)+e^{-x} \left (x+2 x^2\right ) \log (4) \log (x)+e^{-2 x} x \log ^2(4) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 42, normalized size = 1.62 \begin {gather*} \log \left (\frac {x^{2} + x e^{\left (-x + \log \left (2 \, \log \relax (2)\right )\right )} + x}{x + e^{\left (-x + \log \left (2 \, \log \relax (2)\right )\right )}}\right )^{2} + x - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.65, size = 1475, normalized size = 56.73
method | result | size |
risch | \(x -2 \ln \left (\ln \relax (2)\right )^{2}-2 \ln \relax (2)^{2}-\ln \left (\ln \relax (x )\right )+\ln \relax (x )^{2}-i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}-i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}+i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}-i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right ) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}-i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right ) \mathrm {csgn}\left (i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}+i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}+i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right ) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}+i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right ) \mathrm {csgn}\left (i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}+i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}-i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{3}-i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{3}+i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{3}+i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{3}-i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{3}-i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{3}+\ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right )^{2}-4 \ln \relax (2) \ln \left (\ln \relax (2)\right )+\ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )^{2}+i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}-2 \ln \relax (x ) \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right )+\left (2 \ln \relax (x )-2 \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right )\right ) \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )+i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}+i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )^{2}+i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )-i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )-i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right ) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )+i \pi \ln \left (2 \ln \relax (2) {\mathrm e}^{-x}+x \right ) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )-i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (\frac {i x \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )-i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right ) \mathrm {csgn}\left (i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (2 \ln \relax (2) {\mathrm e}^{-x}+x +1\right )}{2 \ln \relax (2) {\mathrm e}^{-x}+x}\right )\) | \(1475\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int -\frac {4 \, {\left (x \log \relax (x) - 1\right )} e^{\left (-2 \, x\right )} \log \relax (2)^{2} + 2 \, {\left ({\left (2 \, x^{2} + x\right )} \log \relax (x) - 2 \, x - 1\right )} e^{\left (-x\right )} \log \relax (2) - x^{2} + {\left (x^{3} + x^{2}\right )} \log \relax (x) + 2 \, {\left (2 \, {\left (3 \, x + 1\right )} e^{\left (-x\right )} \log \relax (2) \log \relax (x) + 4 \, e^{\left (-2 \, x\right )} \log \relax (2)^{2} \log \relax (x) + x^{2} \log \relax (x)\right )} \log \left (\frac {2 \, x e^{\left (-x\right )} \log \relax (2) + x^{2} + x}{2 \, e^{\left (-x\right )} \log \relax (2) + x}\right ) - x}{4 \, x e^{\left (-2 \, x\right )} \log \relax (2)^{2} \log \relax (x) + 2 \, {\left (2 \, x^{2} + x\right )} e^{\left (-x\right )} \log \relax (2) \log \relax (x) + {\left (x^{3} + x^{2}\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.54, size = 38, normalized size = 1.46 \begin {gather*} {\ln \left (\frac {x^2\,{\mathrm {e}}^x+2\,x\,\ln \relax (2)+x\,{\mathrm {e}}^x}{2\,\ln \relax (2)+x\,{\mathrm {e}}^x}\right )}^2+x-\ln \left (\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.91, size = 34, normalized size = 1.31 \begin {gather*} x + \log {\left (\frac {x^{2} + x + 2 x e^{- x} \log {\relax (2 )}}{x + 2 e^{- x} \log {\relax (2 )}} \right )}^{2} - \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________