Optimal. Leaf size=22 \[ \frac {1}{2} (5+2 x) \log \left (\frac {2}{5}+2^{2/5}+2 x\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 61, normalized size of antiderivative = 2.77, number of steps used = 6, number of rules used = 4, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {6688, 43, 2389, 2295} \begin {gather*} \frac {1}{10} \left (10 x+5\ 2^{2/5}+2\right ) \log \left (2 x+\frac {1}{5} \left (2+5\ 2^{2/5}\right )\right )+\frac {1}{10} \left (23-5\ 2^{2/5}\right ) \log \left (10 x+5\ 2^{2/5}+2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2295
Rule 2389
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5 (5+2 x)}{2+5\ 2^{2/5}+10 x}+\log \left (\frac {2}{5}+2^{2/5}+2 x\right )\right ) \, dx\\ &=5 \int \frac {5+2 x}{2+5\ 2^{2/5}+10 x} \, dx+\int \log \left (\frac {2}{5}+2^{2/5}+2 x\right ) \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \log (x) \, dx,x,\frac {2}{5}+2^{2/5}+2 x\right )+5 \int \left (\frac {1}{5}+\frac {23-5\ 2^{2/5}}{5 \left (2+5\ 2^{2/5}+10 x\right )}\right ) \, dx\\ &=\frac {1}{10} \left (2+5\ 2^{2/5}+10 x\right ) \log \left (\frac {1}{5} \left (2+5\ 2^{2/5}\right )+2 x\right )+\frac {1}{10} \left (23-5\ 2^{2/5}\right ) \log \left (2+5\ 2^{2/5}+10 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 51, normalized size = 2.32 \begin {gather*} \frac {1}{10} \left (2+5\ 2^{2/5}-\log (25)-2^{2/5} \log (3125)-x \log (9765625)+5 (5+2 x) \log \left (2+5\ 2^{2/5}+10 x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 16, normalized size = 0.73 \begin {gather*} \frac {1}{2} \, {\left (2 \, x + 5\right )} \log \left (2 \, x + 2^{\frac {2}{5}} + \frac {2}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 58, normalized size = 2.64 \begin {gather*} -\frac {1}{2} \cdot 2^{\frac {2}{5}} \log \relax (5) \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) - x \log \relax (5) + \frac {1}{2} \, {\left (2^{\frac {2}{5}} \log \relax (5) + 5\right )} \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) + x \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 24, normalized size = 1.09
method | result | size |
norman | \(\ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right ) x +\frac {5 \ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right )}{2}\) | \(24\) |
risch | \(\ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right ) x +\frac {5 \ln \left (5 \,2^{\frac {2}{5}}+10 x +2\right )}{2}\) | \(26\) |
derivativedivides | \(\frac {\left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right ) \ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right )}{2}-\frac {2^{\frac {2}{5}} \ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right )}{2}+\frac {23 \ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right )}{10}\) | \(46\) |
default | \(\frac {\left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right ) \ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right )}{2}-\frac {2^{\frac {2}{5}} \ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right )}{2}+\frac {23 \ln \left (2^{\frac {2}{5}}+2 x +\frac {2}{5}\right )}{10}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 183, normalized size = 8.32 \begin {gather*} \frac {1}{20} \, {\left (5 \cdot 2^{\frac {2}{5}} + 2\right )} \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right )^{2} + \frac {1}{2} \cdot 2^{\frac {2}{5}} \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) \log \left (2 \, x + 2^{\frac {2}{5}} + \frac {2}{5}\right ) - \frac {1}{5} \, \log \relax (5) \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) + \frac {1}{10} \, \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right )^{2} - \frac {1}{10} \, {\left ({\left (5 \cdot 2^{\frac {2}{5}} + 2\right )} \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) - 10 \, x\right )} \log \left (2 \, x + 2^{\frac {2}{5}} + \frac {2}{5}\right ) - \frac {1}{4} \cdot 2^{\frac {2}{5}} {\left (2 \, \log \relax (5) \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) - \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right )^{2} + 2 \, \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) \log \left (2 \, x + 2^{\frac {2}{5}} + \frac {2}{5}\right )\right )} + \frac {5}{2} \, \log \left (10 \, x + 5 \cdot 2^{\frac {2}{5}} + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.66, size = 16, normalized size = 0.73 \begin {gather*} \frac {\ln \left (2\,x+2^{2/5}+\frac {2}{5}\right )\,\left (2\,x+5\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 31, normalized size = 1.41 \begin {gather*} x \log {\left (2 x + \frac {2}{5} + 2^{\frac {2}{5}} \right )} + \frac {5 \log {\left (10 x + 2 + 5 \cdot 2^{\frac {2}{5}} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________