Optimal. Leaf size=29 \[ 7-\frac {3}{5 \left (1-\frac {e^{5 x}}{x}+x^2\right )}-\log (3+x) \]
________________________________________________________________________________________
Rubi [F] time = 1.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 e^{10 x}-5 x^2+18 x^3-4 x^4-5 x^6+e^{5 x} \left (9-32 x-15 x^2+10 x^3\right )}{15 x^2+5 x^3+30 x^4+10 x^5+15 x^6+5 x^7+e^{10 x} (15+5 x)+e^{5 x} \left (-30 x-10 x^2-30 x^3-10 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 e^{10 x}+e^{5 x} \left (9-32 x-15 x^2+10 x^3\right )-x^2 \left (5-18 x+4 x^2+5 x^4\right )}{5 (3+x) \left (e^{5 x}-x-x^3\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {-5 e^{10 x}+e^{5 x} \left (9-32 x-15 x^2+10 x^3\right )-x^2 \left (5-18 x+4 x^2+5 x^4\right )}{(3+x) \left (e^{5 x}-x-x^3\right )^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {5}{3+x}+\frac {3 (-1+5 x)}{-e^{5 x}+x+x^3}-\frac {3 x \left (-1+5 x-3 x^2+5 x^3\right )}{\left (-e^{5 x}+x+x^3\right )^2}\right ) \, dx\\ &=-\log (3+x)+\frac {3}{5} \int \frac {-1+5 x}{-e^{5 x}+x+x^3} \, dx-\frac {3}{5} \int \frac {x \left (-1+5 x-3 x^2+5 x^3\right )}{\left (-e^{5 x}+x+x^3\right )^2} \, dx\\ &=-\log (3+x)-\frac {3}{5} \int \left (-\frac {x}{\left (-e^{5 x}+x+x^3\right )^2}+\frac {5 x^2}{\left (-e^{5 x}+x+x^3\right )^2}-\frac {3 x^3}{\left (-e^{5 x}+x+x^3\right )^2}+\frac {5 x^4}{\left (-e^{5 x}+x+x^3\right )^2}\right ) \, dx+\frac {3}{5} \int \left (\frac {1}{e^{5 x}-x-x^3}+\frac {5 x}{-e^{5 x}+x+x^3}\right ) \, dx\\ &=-\log (3+x)+\frac {3}{5} \int \frac {1}{e^{5 x}-x-x^3} \, dx+\frac {3}{5} \int \frac {x}{\left (-e^{5 x}+x+x^3\right )^2} \, dx+\frac {9}{5} \int \frac {x^3}{\left (-e^{5 x}+x+x^3\right )^2} \, dx-3 \int \frac {x^2}{\left (-e^{5 x}+x+x^3\right )^2} \, dx-3 \int \frac {x^4}{\left (-e^{5 x}+x+x^3\right )^2} \, dx+3 \int \frac {x}{-e^{5 x}+x+x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 30, normalized size = 1.03 \begin {gather*} \frac {1}{5} \left (\frac {3 x}{e^{5 x}-x-x^3}-5 \log (3+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 36, normalized size = 1.24 \begin {gather*} -\frac {5 \, {\left (x^{3} + x - e^{\left (5 \, x\right )}\right )} \log \left (x + 3\right ) + 3 \, x}{5 \, {\left (x^{3} + x - e^{\left (5 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 45, normalized size = 1.55 \begin {gather*} -\frac {5 \, x^{3} \log \left (x + 3\right ) + 5 \, x \log \left (x + 3\right ) - 5 \, e^{\left (5 \, x\right )} \log \left (x + 3\right ) + 3 \, x}{5 \, {\left (x^{3} + x - e^{\left (5 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 24, normalized size = 0.83
method | result | size |
norman | \(-\frac {3 x}{5 \left (x^{3}+x -{\mathrm e}^{5 x}\right )}-\ln \left (3+x \right )\) | \(24\) |
risch | \(-\frac {3 x}{5 \left (x^{3}+x -{\mathrm e}^{5 x}\right )}-\ln \left (3+x \right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 23, normalized size = 0.79 \begin {gather*} -\frac {3 \, x}{5 \, {\left (x^{3} + x - e^{\left (5 \, x\right )}\right )}} - \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {5\,{\mathrm {e}}^{10\,x}+{\mathrm {e}}^{5\,x}\,\left (-10\,x^3+15\,x^2+32\,x-9\right )+5\,x^2-18\,x^3+4\,x^4+5\,x^6}{{\mathrm {e}}^{10\,x}\,\left (5\,x+15\right )-{\mathrm {e}}^{5\,x}\,\left (10\,x^4+30\,x^3+10\,x^2+30\,x\right )+15\,x^2+5\,x^3+30\,x^4+10\,x^5+15\,x^6+5\,x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 0.76 \begin {gather*} \frac {3 x}{- 5 x^{3} - 5 x + 5 e^{5 x}} - \log {\left (x + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________