Optimal. Leaf size=17 \[ \frac {15625 \log \left (\frac {x}{e^{-1+x}+x}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-1+x} (15625-15625 x)+\left (-31250 e^{-1+x}-31250 x\right ) \log \left (\frac {x}{e^{-1+x}+x}\right )}{e^{-1+x} x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e \left (e^{-1+x} (15625-15625 x)+\left (-31250 e^{-1+x}-31250 x\right ) \log \left (\frac {x}{e^{-1+x}+x}\right )\right )}{x^3 \left (e^x+e x\right )} \, dx\\ &=e \int \frac {e^{-1+x} (15625-15625 x)+\left (-31250 e^{-1+x}-31250 x\right ) \log \left (\frac {x}{e^{-1+x}+x}\right )}{x^3 \left (e^x+e x\right )} \, dx\\ &=e \int \left (\frac {15625 (-1+x)}{x^2 \left (e^x+e x\right )}-\frac {15625 \left (1+x+2 \log \left (\frac {x}{e^x+e x}\right )\right )}{e x^3}\right ) \, dx\\ &=-\left (15625 \int \frac {1+x+2 \log \left (\frac {x}{e^x+e x}\right )}{x^3} \, dx\right )+(15625 e) \int \frac {-1+x}{x^2 \left (e^x+e x\right )} \, dx\\ &=-\left (15625 \int \left (\frac {1+x}{x^3}+\frac {2 \log \left (\frac {x}{e^x+e x}\right )}{x^3}\right ) \, dx\right )+(15625 e) \int \left (-\frac {1}{x^2 \left (e^x+e x\right )}+\frac {1}{x \left (e^x+e x\right )}\right ) \, dx\\ &=-\left (15625 \int \frac {1+x}{x^3} \, dx\right )-31250 \int \frac {\log \left (\frac {x}{e^x+e x}\right )}{x^3} \, dx-(15625 e) \int \frac {1}{x^2 \left (e^x+e x\right )} \, dx+(15625 e) \int \frac {1}{x \left (e^x+e x\right )} \, dx\\ &=\frac {15625 (1+x)^2}{2 x^2}+\frac {15625 \log \left (\frac {x}{e^x+e x}\right )}{x^2}-15625 \int \frac {e^x (1-x)}{x^3 \left (e^x+e x\right )} \, dx-(15625 e) \int \frac {1}{x^2 \left (e^x+e x\right )} \, dx+(15625 e) \int \frac {1}{x \left (e^x+e x\right )} \, dx\\ &=\frac {15625 (1+x)^2}{2 x^2}+\frac {15625 \log \left (\frac {x}{e^x+e x}\right )}{x^2}-15625 \int \left (\frac {e^x}{x^3 \left (e^x+e x\right )}-\frac {e^x}{x^2 \left (e^x+e x\right )}\right ) \, dx-(15625 e) \int \frac {1}{x^2 \left (e^x+e x\right )} \, dx+(15625 e) \int \frac {1}{x \left (e^x+e x\right )} \, dx\\ &=\frac {15625 (1+x)^2}{2 x^2}+\frac {15625 \log \left (\frac {x}{e^x+e x}\right )}{x^2}-15625 \int \frac {e^x}{x^3 \left (e^x+e x\right )} \, dx+15625 \int \frac {e^x}{x^2 \left (e^x+e x\right )} \, dx-(15625 e) \int \frac {1}{x^2 \left (e^x+e x\right )} \, dx+(15625 e) \int \frac {1}{x \left (e^x+e x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 25, normalized size = 1.47 \begin {gather*} -15625 \left (-\frac {1}{x^2}-\frac {\log \left (\frac {x}{e^x+e x}\right )}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 16, normalized size = 0.94 \begin {gather*} \frac {15625 \, \log \left (\frac {x}{x + e^{\left (x - 1\right )}}\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 19, normalized size = 1.12 \begin {gather*} \frac {15625 \, {\left (\log \left (\frac {x}{x e + e^{x}}\right ) + 1\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 17, normalized size = 1.00
method | result | size |
norman | \(\frac {15625 \ln \left (\frac {x}{{\mathrm e}^{x -1}+x}\right )}{x^{2}}\) | \(17\) |
risch | \(-\frac {15625 \ln \left ({\mathrm e}^{x -1}+x \right )}{x^{2}}+\frac {-\frac {15625 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x -1}+x}\right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x -1}+x}\right )}{2}+\frac {15625 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x -1}+x}\right )^{2}}{2}+\frac {15625 i \pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x -1}+x}\right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x -1}+x}\right )^{2}}{2}-\frac {15625 i \pi \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x -1}+x}\right )^{3}}{2}+15625 \ln \relax (x )}{x^{2}}\) | \(132\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 19, normalized size = 1.12 \begin {gather*} -\frac {15625 \, {\left (\log \left (x e + e^{x}\right ) - \log \relax (x) - 1\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.48, size = 19, normalized size = 1.12 \begin {gather*} \frac {15625\,\left (\ln \left (\frac {x}{{\mathrm {e}}^x+x\,\mathrm {e}}\right )+1\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 14, normalized size = 0.82 \begin {gather*} \frac {15625 \log {\left (\frac {x}{x + e^{x - 1}} \right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________