Optimal. Leaf size=28 \[ \log \left (5 e^5 \left (2 x-\left (-1+\frac {4+e^3}{1-x}\right ) x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 20, normalized size of antiderivative = 0.71, number of steps used = 2, number of rules used = 1, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {2074} \begin {gather*} -\log (1-x)+\log (x)+\log \left (3 x+e^3+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{1-x}+\frac {1}{x}+\frac {3}{1+e^3+3 x}\right ) \, dx\\ &=-\log (1-x)+\log (x)+\log \left (1+e^3+3 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 0.71 \begin {gather*} -\log (1-x)+\log (x)+\log \left (1+e^3+3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 19, normalized size = 0.68 \begin {gather*} \log \left (3 \, x^{2} + x e^{3} + x\right ) - \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 20, normalized size = 0.71 \begin {gather*} \log \left ({\left | 3 \, x + e^{3} + 1 \right |}\right ) - \log \left ({\left | x - 1 \right |}\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 18, normalized size = 0.64
method | result | size |
default | \(\ln \relax (x )-\ln \left (x -1\right )+\ln \left (3 x +{\mathrm e}^{3}+1\right )\) | \(18\) |
norman | \(\ln \relax (x )-\ln \left (x -1\right )+\ln \left (3 x +{\mathrm e}^{3}+1\right )\) | \(18\) |
risch | \(-\ln \left (x -1\right )+\ln \left (3 x^{2}+x \left ({\mathrm e}^{3}+1\right )\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 17, normalized size = 0.61 \begin {gather*} \log \left (3 \, x + e^{3} + 1\right ) - \log \left (x - 1\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.72, size = 17, normalized size = 0.61 \begin {gather*} \ln \left (x\,\left (3\,x+{\mathrm {e}}^3+1\right )\right )-\ln \left (x-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 19, normalized size = 0.68 \begin {gather*} - \log {\left (x - 1 \right )} + \log {\left (x^{2} + x \left (\frac {1}{3} + \frac {e^{3}}{3}\right ) \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________