Optimal. Leaf size=32 \[ \frac {x}{\log \left (\frac {e^x-5 x}{-e^{e^2}-5 x}+x-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 11.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 e^2} (-1+x)-25 x^2+25 x^3+e^x \left (5 x-5 x^2\right )+e^{e^2} \left (-5 x-e^x x+10 x^2\right )+\left (-e^{2 e^2} x+5 e^x x-25 x^2-25 x^3+e^{e^2} \left (e^x-5 x-10 x^2\right )+\left (e^{2 e^2}+10 e^{e^2} x+25 x^2\right ) \log (x)\right ) \log \left (\frac {-e^x+5 x+e^{e^2} x+5 x^2+\left (-e^{e^2}-5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}{\left (-e^{2 e^2} x+5 e^x x-25 x^2-25 x^3+e^{e^2} \left (e^x-5 x-10 x^2\right )+\left (e^{2 e^2}+10 e^{e^2} x+25 x^2\right ) \log (x)\right ) \log ^2\left (\frac {-e^x+5 x+e^{e^2} x+5 x^2+\left (-e^{e^2}-5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 e^2} (-1+x)-25 x^2+25 x^3+e^x \left (5 x-5 x^2\right )+e^{e^2} \left (-5 x-e^x x+10 x^2\right )+\left (-e^{2 e^2} x+5 e^x x-25 x^2-25 x^3+e^{e^2} \left (e^x-5 x-10 x^2\right )+\left (e^{2 e^2}+10 e^{e^2} x+25 x^2\right ) \log (x)\right ) \log \left (\frac {-e^x+5 x+e^{e^2} x+5 x^2+\left (-e^{e^2}-5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}{\left (e^{e^2}+5 x\right ) \left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2+\left (-e^{e^2}-5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx\\ &=\int \left (\frac {-e^{e^2}+e^{e^2} x+5 \left (1-\frac {e^{e^2}}{5}\right ) x^2-5 x^3-5 \left (1-\frac {e^{e^2}}{5}\right ) x \log (x)+5 x^2 \log (x)}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {5 \left (1-\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )+5 x \log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}{\left (e^{e^2}+5 x\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}\right ) \, dx\\ &=\int \frac {-e^{e^2}+e^{e^2} x+5 \left (1-\frac {e^{e^2}}{5}\right ) x^2-5 x^3-5 \left (1-\frac {e^{e^2}}{5}\right ) x \log (x)+5 x^2 \log (x)}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\int \frac {5 \left (1-\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )+5 x \log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}{\left (e^{e^2}+5 x\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx\\ &=\int \frac {-5 (-1+x) x^2+e^{e^2} \left (-1+x-x^2\right )+x \left (-5+e^{e^2}+5 x\right ) \log (x)}{\left (e^x-e^{e^2} x-5 x (1+x)+\left (e^{e^2}+5 x\right ) \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\int \frac {-\frac {x \left (-5+e^{e^2}+5 x\right )}{e^{e^2}+5 x}+\log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}{\log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx\\ &=\int \left (\frac {e^{e^2}}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {e^{e^2} \left (1-5 e^{-e^2}\right ) x^2}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {5 x^3}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {5 \left (1-\frac {e^{e^2}}{5}\right ) x \log (x)}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {e^{e^2} x}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {5 x^2 \log (x)}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}\right ) \, dx+\int \left (-\frac {x \left (-5+e^{e^2}+5 x\right )}{\left (e^{e^2}+5 x\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {1}{\log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}\right ) \, dx\\ &=5 \int \frac {x^3}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+5 \int \frac {x^2 \log (x)}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+e^{e^2} \int \frac {1}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+e^{e^2} \int \frac {x}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\left (5-e^{e^2}\right ) \int \frac {x \log (x)}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\left (-5+e^{e^2}\right ) \int \frac {x^2}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx-\int \frac {x \left (-5+e^{e^2}+5 x\right )}{\left (e^{e^2}+5 x\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\int \frac {1}{\log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx\\ &=5 \int \frac {x^3}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+5 \int \frac {x^2 \log (x)}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+e^{e^2} \int \frac {1}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+e^{e^2} \int \frac {x}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\left (5-e^{e^2}\right ) \int \frac {x \log (x)}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\left (-5+e^{e^2}\right ) \int \frac {x^2}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx-\int \left (-\frac {1}{\log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {x}{\log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}+\frac {e^{e^2}}{\left (e^{e^2}+5 x\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )}\right ) \, dx+\int \frac {1}{\log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx\\ &=5 \int \frac {x^3}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+5 \int \frac {x^2 \log (x)}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx-e^{e^2} \int \frac {1}{\left (e^{e^2}+5 x\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+e^{e^2} \int \frac {1}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+e^{e^2} \int \frac {x}{\left (e^x-5 \left (1+\frac {e^{e^2}}{5}\right ) x-5 x^2+e^{e^2} \log (x)+5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\left (5-e^{e^2}\right ) \int \frac {x \log (x)}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\left (-5+e^{e^2}\right ) \int \frac {x^2}{\left (-e^x+5 \left (1+\frac {e^{e^2}}{5}\right ) x+5 x^2-e^{e^2} \log (x)-5 x \log (x)\right ) \log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\int \frac {1}{\log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx-\int \frac {x}{\log ^2\left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx+\int \frac {1}{\log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 49, normalized size = 1.53 \begin {gather*} \frac {x}{\log \left (\frac {-e^x+e^{e^2} x+5 x (1+x)-\left (e^{e^2}+5 x\right ) \log (x)}{e^{e^2}+5 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 44, normalized size = 1.38 \begin {gather*} \frac {x}{\log \left (\frac {5 \, x^{2} + x e^{\left (e^{2}\right )} - {\left (5 \, x + e^{\left (e^{2}\right )}\right )} \log \relax (x) + 5 \, x - e^{x}}{5 \, x + e^{\left (e^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.90, size = 46, normalized size = 1.44 \begin {gather*} \frac {x}{\log \left (5 \, x^{2} + x e^{\left (e^{2}\right )} - 5 \, x \log \relax (x) - e^{\left (e^{2}\right )} \log \relax (x) + 5 \, x - e^{x}\right ) - \log \left (5 \, x + e^{\left (e^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.26, size = 321, normalized size = 10.03
method | result | size |
risch | \(\frac {2 i x}{\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{{\mathrm e}^{2}}+5 x}\right ) \mathrm {csgn}\left (i \left (-\left (x -\ln \relax (x )\right ) {\mathrm e}^{{\mathrm e}^{2}}-5 x^{2}-\left (-5 \ln \relax (x )+5\right ) x +{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\left (x -\ln \relax (x )\right ) {\mathrm e}^{{\mathrm e}^{2}}-5 x^{2}-\left (-5 \ln \relax (x )+5\right ) x +{\mathrm e}^{x}\right )}{{\mathrm e}^{{\mathrm e}^{2}}+5 x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{{\mathrm e}^{2}}+5 x}\right ) \mathrm {csgn}\left (\frac {i \left (-\left (x -\ln \relax (x )\right ) {\mathrm e}^{{\mathrm e}^{2}}-5 x^{2}-\left (-5 \ln \relax (x )+5\right ) x +{\mathrm e}^{x}\right )}{{\mathrm e}^{{\mathrm e}^{2}}+5 x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (-\left (x -\ln \relax (x )\right ) {\mathrm e}^{{\mathrm e}^{2}}-5 x^{2}-\left (-5 \ln \relax (x )+5\right ) x +{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\left (x -\ln \relax (x )\right ) {\mathrm e}^{{\mathrm e}^{2}}-5 x^{2}-\left (-5 \ln \relax (x )+5\right ) x +{\mathrm e}^{x}\right )}{{\mathrm e}^{{\mathrm e}^{2}}+5 x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left (-\left (x -\ln \relax (x )\right ) {\mathrm e}^{{\mathrm e}^{2}}-5 x^{2}-\left (-5 \ln \relax (x )+5\right ) x +{\mathrm e}^{x}\right )}{{\mathrm e}^{{\mathrm e}^{2}}+5 x}\right )^{3}-2 i \ln \left ({\mathrm e}^{{\mathrm e}^{2}}+5 x \right )+2 i \ln \left (\left (x -\ln \relax (x )\right ) {\mathrm e}^{{\mathrm e}^{2}}+5 x^{2}+\left (-5 \ln \relax (x )+5\right ) x -{\mathrm e}^{x}\right )}\) | \(321\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.80, size = 44, normalized size = 1.38 \begin {gather*} \frac {x}{\log \left (5 \, x^{2} + x {\left (e^{\left (e^{2}\right )} + 5\right )} - {\left (5 \, x + e^{\left (e^{2}\right )}\right )} \log \relax (x) - e^{x}\right ) - \log \left (5 \, x + e^{\left (e^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int -\frac {\ln \left (\frac {5\,x-{\mathrm {e}}^x-\ln \relax (x)\,\left (5\,x+{\mathrm {e}}^{{\mathrm {e}}^2}\right )+x\,{\mathrm {e}}^{{\mathrm {e}}^2}+5\,x^2}{5\,x+{\mathrm {e}}^{{\mathrm {e}}^2}}\right )\,\left (x\,{\mathrm {e}}^{2\,{\mathrm {e}}^2}-\ln \relax (x)\,\left (25\,x^2+10\,{\mathrm {e}}^{{\mathrm {e}}^2}\,x+{\mathrm {e}}^{2\,{\mathrm {e}}^2}\right )-5\,x\,{\mathrm {e}}^x+{\mathrm {e}}^{{\mathrm {e}}^2}\,\left (5\,x-{\mathrm {e}}^x+10\,x^2\right )+25\,x^2+25\,x^3\right )+{\mathrm {e}}^{{\mathrm {e}}^2}\,\left (5\,x+x\,{\mathrm {e}}^x-10\,x^2\right )-{\mathrm {e}}^{2\,{\mathrm {e}}^2}\,\left (x-1\right )-{\mathrm {e}}^x\,\left (5\,x-5\,x^2\right )+25\,x^2-25\,x^3}{{\ln \left (\frac {5\,x-{\mathrm {e}}^x-\ln \relax (x)\,\left (5\,x+{\mathrm {e}}^{{\mathrm {e}}^2}\right )+x\,{\mathrm {e}}^{{\mathrm {e}}^2}+5\,x^2}{5\,x+{\mathrm {e}}^{{\mathrm {e}}^2}}\right )}^2\,\left (x\,{\mathrm {e}}^{2\,{\mathrm {e}}^2}-\ln \relax (x)\,\left (25\,x^2+10\,{\mathrm {e}}^{{\mathrm {e}}^2}\,x+{\mathrm {e}}^{2\,{\mathrm {e}}^2}\right )-5\,x\,{\mathrm {e}}^x+{\mathrm {e}}^{{\mathrm {e}}^2}\,\left (5\,x-{\mathrm {e}}^x+10\,x^2\right )+25\,x^2+25\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.83, size = 42, normalized size = 1.31 \begin {gather*} \frac {x}{\log {\left (\frac {5 x^{2} + 5 x + x e^{e^{2}} + \left (- 5 x - e^{e^{2}}\right ) \log {\relax (x )} - e^{x}}{5 x + e^{e^{2}}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________