Optimal. Leaf size=28 \[ 40 x+\frac {3}{\left (\frac {1}{3} \left (3+e^3-x\right )+e^{x^2} x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1134+40 e^9+e^6 (360-120 x)-1080 x+360 x^2-40 x^3+1080 e^{3 x^2} x^3+e^3 \left (1080-720 x+120 x^2\right )+e^{2 x^2} \left (3240 x^2+1080 e^3 x^2-1080 x^3\right )+e^{x^2} \left (-162+3240 x+360 e^6 x-2484 x^2+360 x^3+e^3 \left (2160 x-720 x^2\right )\right )}{27+e^9+e^6 (9-3 x)-27 x+9 x^2-x^3+27 e^{3 x^2} x^3+e^3 \left (27-18 x+3 x^2\right )+e^{2 x^2} \left (81 x^2+27 e^3 x^2-27 x^3\right )+e^{x^2} \left (81 x+9 e^6 x-54 x^2+9 x^3+e^3 \left (54 x-18 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (567 \left (1+\frac {20 e^9}{567}\right )-60 e^6 (-3+x)+60 e^3 (-3+x)^2-540 x+180 e^{6+x^2} x-360 e^{3+x^2} (-3+x) x+180 x^2+540 e^{3+2 x^2} x^2-540 e^{2 x^2} (-3+x) x^2-20 x^3+540 e^{3 x^2} x^3+9 e^{x^2} \left (-9+180 x-138 x^2+20 x^3\right )\right )}{\left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^3} \, dx\\ &=2 \int \frac {567 \left (1+\frac {20 e^9}{567}\right )-60 e^6 (-3+x)+60 e^3 (-3+x)^2-540 x+180 e^{6+x^2} x-360 e^{3+x^2} (-3+x) x+180 x^2+540 e^{3+2 x^2} x^2-540 e^{2 x^2} (-3+x) x^2-20 x^3+540 e^{3 x^2} x^3+9 e^{x^2} \left (-9+180 x-138 x^2+20 x^3\right )}{\left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^3} \, dx\\ &=2 \int \left (20+\frac {27 \left (-1-2 x^2\right )}{x \left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^2}+\frac {27 \left (3+e^3+2 \left (3+e^3\right ) x^2-2 x^3\right )}{x \left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^3}\right ) \, dx\\ &=40 x+54 \int \frac {-1-2 x^2}{x \left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^2} \, dx+54 \int \frac {3+e^3+2 \left (3+e^3\right ) x^2-2 x^3}{x \left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^3} \, dx\\ &=40 x+54 \int \left (\frac {2 x^2}{\left (-3 \left (1+\frac {e^3}{3}\right )+x-3 e^{x^2} x\right )^3}+\frac {3+e^3}{x \left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^3}+\frac {2 \left (3+e^3\right ) x}{\left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^3}\right ) \, dx+54 \int \left (-\frac {1}{x \left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^2}-\frac {2 x}{\left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^2}\right ) \, dx\\ &=40 x-54 \int \frac {1}{x \left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^2} \, dx+108 \int \frac {x^2}{\left (-3 \left (1+\frac {e^3}{3}\right )+x-3 e^{x^2} x\right )^3} \, dx-108 \int \frac {x}{\left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^2} \, dx+\left (54 \left (3+e^3\right )\right ) \int \frac {1}{x \left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^3} \, dx+\left (108 \left (3+e^3\right )\right ) \int \frac {x}{\left (3 \left (1+\frac {e^3}{3}\right )-x+3 e^{x^2} x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 28, normalized size = 1.00 \begin {gather*} 2 \left (20 x+\frac {27}{2 \left (3+e^3-x+3 e^{x^2} x\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 113, normalized size = 4.04 \begin {gather*} \frac {360 \, x^{3} e^{\left (2 \, x^{2}\right )} + 40 \, x^{3} - 240 \, x^{2} + 40 \, x e^{6} - 80 \, {\left (x^{2} - 3 \, x\right )} e^{3} - 240 \, {\left (x^{3} - x^{2} e^{3} - 3 \, x^{2}\right )} e^{\left (x^{2}\right )} + 360 \, x + 27}{9 \, x^{2} e^{\left (2 \, x^{2}\right )} + x^{2} - 2 \, {\left (x - 3\right )} e^{3} - 6 \, {\left (x^{2} - x e^{3} - 3 \, x\right )} e^{\left (x^{2}\right )} - 6 \, x + e^{6} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.95, size = 130, normalized size = 4.64 \begin {gather*} \frac {360 \, x^{3} e^{\left (2 \, x^{2}\right )} - 240 \, x^{3} e^{\left (x^{2}\right )} + 40 \, x^{3} - 80 \, x^{2} e^{3} + 240 \, x^{2} e^{\left (x^{2} + 3\right )} + 720 \, x^{2} e^{\left (x^{2}\right )} - 240 \, x^{2} + 40 \, x e^{6} + 240 \, x e^{3} + 360 \, x + 27}{9 \, x^{2} e^{\left (2 \, x^{2}\right )} - 6 \, x^{2} e^{\left (x^{2}\right )} + x^{2} - 2 \, x e^{3} + 6 \, x e^{\left (x^{2} + 3\right )} + 18 \, x e^{\left (x^{2}\right )} - 6 \, x + e^{6} + 6 \, e^{3} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 23, normalized size = 0.82
method | result | size |
risch | \(40 x +\frac {27}{\left (3 \,{\mathrm e}^{x^{2}} x +{\mathrm e}^{3}-x +3\right )^{2}}\) | \(23\) |
norman | \(\frac {\left (-120 \,{\mathrm e}^{6}-720 \,{\mathrm e}^{3}-1080\right ) x +\left (-240 \,{\mathrm e}^{3}-720\right ) x^{2} {\mathrm e}^{x^{2}}+\left (720 \,{\mathrm e}^{3}+2160\right ) x^{2} {\mathrm e}^{2 x^{2}}+\left (480 \,{\mathrm e}^{6}+2880 \,{\mathrm e}^{3}+4320\right ) x \,{\mathrm e}^{x^{2}}+40 x^{3}-240 x^{3} {\mathrm e}^{x^{2}}+360 x^{3} {\mathrm e}^{2 x^{2}}+2187+80 \,{\mathrm e}^{9}+720 \,{\mathrm e}^{6}+2160 \,{\mathrm e}^{3}}{\left (3 \,{\mathrm e}^{x^{2}} x +{\mathrm e}^{3}-x +3\right )^{2}}\) | \(123\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 106, normalized size = 3.79 \begin {gather*} \frac {360 \, x^{3} e^{\left (2 \, x^{2}\right )} + 40 \, x^{3} - 80 \, x^{2} {\left (e^{3} + 3\right )} + 40 \, x {\left (e^{6} + 6 \, e^{3} + 9\right )} - 240 \, {\left (x^{3} - x^{2} {\left (e^{3} + 3\right )}\right )} e^{\left (x^{2}\right )} + 27}{9 \, x^{2} e^{\left (2 \, x^{2}\right )} + x^{2} - 2 \, x {\left (e^{3} + 3\right )} - 6 \, {\left (x^{2} - x {\left (e^{3} + 3\right )}\right )} e^{\left (x^{2}\right )} + e^{6} + 6 \, e^{3} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {40\,{\mathrm {e}}^9-1080\,x+{\mathrm {e}}^3\,\left (120\,x^2-720\,x+1080\right )+{\mathrm {e}}^{2\,x^2}\,\left (1080\,x^2\,{\mathrm {e}}^3+3240\,x^2-1080\,x^3\right )+{\mathrm {e}}^{x^2}\,\left (3240\,x+{\mathrm {e}}^3\,\left (2160\,x-720\,x^2\right )+360\,x\,{\mathrm {e}}^6-2484\,x^2+360\,x^3-162\right )+1080\,x^3\,{\mathrm {e}}^{3\,x^2}+360\,x^2-40\,x^3-{\mathrm {e}}^6\,\left (120\,x-360\right )+1134}{{\mathrm {e}}^9-27\,x+{\mathrm {e}}^3\,\left (3\,x^2-18\,x+27\right )+{\mathrm {e}}^{2\,x^2}\,\left (27\,x^2\,{\mathrm {e}}^3+81\,x^2-27\,x^3\right )+{\mathrm {e}}^{x^2}\,\left (81\,x+{\mathrm {e}}^3\,\left (54\,x-18\,x^2\right )+9\,x\,{\mathrm {e}}^6-54\,x^2+9\,x^3\right )+27\,x^3\,{\mathrm {e}}^{3\,x^2}+9\,x^2-x^3-{\mathrm {e}}^6\,\left (3\,x-9\right )+27} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.35, size = 60, normalized size = 2.14 \begin {gather*} 40 x + \frac {27}{9 x^{2} e^{2 x^{2}} + x^{2} - 2 x e^{3} - 6 x + \left (- 6 x^{2} + 18 x + 6 x e^{3}\right ) e^{x^{2}} + 9 + 6 e^{3} + e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________