Optimal. Leaf size=21 \[ \log \left (\frac {15 \left (9+\frac {8}{x}\right )}{\left (e^4-x\right )^2}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 39, normalized size of antiderivative = 1.86, number of steps used = 5, number of rules used = 3, integrand size = 92, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {6, 2074, 1587} \begin {gather*} \log \left (x^4-2 e^4 x^3+e^8 x^2+135 x+120\right )-2 \log \left (e^4-x\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {360 x+\left (270+e^{12}\right ) x^2-3 e^8 x^3-x^5+e^4 \left (-120+3 x^4\right )}{-120 x^2-135 x^3+e^{12} x^3-3 e^8 x^4-x^6+e^4 \left (120 x+135 x^2+3 x^5\right )} \, dx\\ &=\int \frac {360 x+\left (270+e^{12}\right ) x^2-3 e^8 x^3-x^5+e^4 \left (-120+3 x^4\right )}{-120 x^2+\left (-135+e^{12}\right ) x^3-3 e^8 x^4-x^6+e^4 \left (120 x+135 x^2+3 x^5\right )} \, dx\\ &=\int \left (\frac {2}{e^4-x}-\frac {1}{x}+\frac {135+2 e^8 x-6 e^4 x^2+4 x^3}{120+135 x+e^8 x^2-2 e^4 x^3+x^4}\right ) \, dx\\ &=-2 \log \left (e^4-x\right )-\log (x)+\int \frac {135+2 e^8 x-6 e^4 x^2+4 x^3}{120+135 x+e^8 x^2-2 e^4 x^3+x^4} \, dx\\ &=-2 \log \left (e^4-x\right )-\log (x)+\log \left (120+135 x+e^8 x^2-2 e^4 x^3+x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 39, normalized size = 1.86 \begin {gather*} -2 \log \left (e^4-x\right )-\log (x)+\log \left (120+135 x+e^8 x^2-2 e^4 x^3+x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 36, normalized size = 1.71 \begin {gather*} \log \left (x^{4} - 2 \, x^{3} e^{4} + x^{2} e^{8} + 135 \, x + 120\right ) - 2 \, \log \left (x - e^{4}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 39, normalized size = 1.86
method | result | size |
risch | \(-\ln \left (-x \right )-2 \ln \left (x -{\mathrm e}^{4}\right )+\ln \left (x^{2} {\mathrm e}^{8}-2 x^{3} {\mathrm e}^{4}+x^{4}+135 x +120\right )\) | \(39\) |
norman | \(-\ln \relax (x )-2 \ln \left ({\mathrm e}^{4}-x \right )+\ln \left (x^{2} {\mathrm e}^{8}-2 x^{3} {\mathrm e}^{4}+x^{4}+135 x +120\right )\) | \(43\) |
default | \(-\ln \relax (x )-\left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{5}-3 \textit {\_Z}^{4} {\mathrm e}^{4}+3 \textit {\_Z}^{3} {\mathrm e}^{8}+\left (-{\mathrm e}^{12}+135\right ) \textit {\_Z}^{2}+\left (-135 \,{\mathrm e}^{4}+120\right ) \textit {\_Z} -120 \,{\mathrm e}^{4}\right )}{\sum }\frac {\left (2 \textit {\_R}^{4}-6 \textit {\_R}^{3} {\mathrm e}^{4}+6 \textit {\_R}^{2} {\mathrm e}^{8}+\left (-2 \,{\mathrm e}^{12}-135\right ) \textit {\_R} -135 \,{\mathrm e}^{4}-240\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R} \,{\mathrm e}^{12}-9 \textit {\_R}^{2} {\mathrm e}^{8}+12 \textit {\_R}^{3} {\mathrm e}^{4}-5 \textit {\_R}^{4}+135 \,{\mathrm e}^{4}-270 \textit {\_R} -120}\right )\) | \(127\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 36, normalized size = 1.71 \begin {gather*} \log \left (x^{4} - 2 \, x^{3} e^{4} + x^{2} e^{8} + 135 \, x + 120\right ) - 2 \, \log \left (x - e^{4}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.37, size = 36, normalized size = 1.71 \begin {gather*} \ln \left (x^4-2\,{\mathrm {e}}^4\,x^3+{\mathrm {e}}^8\,x^2+135\,x+120\right )-2\,\ln \left (x-{\mathrm {e}}^4\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 8.06, size = 36, normalized size = 1.71 \begin {gather*} - \log {\relax (x )} - 2 \log {\left (x - e^{4} \right )} + \log {\left (x^{4} - 2 x^{3} e^{4} + x^{2} e^{8} + 135 x + 120 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________