Optimal. Leaf size=24 \[ x \left (e^2+\log (5)\right )+\log ^8\left (x-\log \left (\frac {x}{2+x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.03, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6, 6741, 6688, 6742, 6686} \begin {gather*} \log ^8\left (x-\log \left (\frac {x}{x+2}\right )\right )+x \left (e^2+\log (5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6686
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2 x^2-x^3\right ) \left (e^2+\log (5)\right )+\left (e^2 \left (2 x+x^2\right )+\left (2 x+x^2\right ) \log (5)\right ) \log \left (\frac {x}{2+x}\right )+\left (16-16 x-8 x^2\right ) \log ^7\left (x-\log \left (\frac {x}{2+x}\right )\right )}{-2 x^2-x^3+\left (2 x+x^2\right ) \log \left (\frac {x}{2+x}\right )} \, dx\\ &=\int \frac {-\left (\left (-2 x^2-x^3\right ) \left (e^2+\log (5)\right )\right )-\left (e^2 \left (2 x+x^2\right )+\left (2 x+x^2\right ) \log (5)\right ) \log \left (\frac {x}{2+x}\right )-\left (16-16 x-8 x^2\right ) \log ^7\left (x-\log \left (\frac {x}{2+x}\right )\right )}{x (2+x) \left (x-\log \left (\frac {x}{2+x}\right )\right )} \, dx\\ &=\int \frac {x^2 (2+x) \left (e^2+\log (5)\right )-x (2+x) \left (e^2+\log (5)\right ) \log \left (\frac {x}{2+x}\right )+8 \left (-2+2 x+x^2\right ) \log ^7\left (x-\log \left (\frac {x}{2+x}\right )\right )}{x (2+x) \left (x-\log \left (\frac {x}{2+x}\right )\right )} \, dx\\ &=\int \left (e^2 \left (1+\frac {\log (5)}{e^2}\right )+\frac {8 \left (-2+2 x+x^2\right ) \log ^7\left (x-\log \left (\frac {x}{2+x}\right )\right )}{x (2+x) \left (x-\log \left (\frac {x}{2+x}\right )\right )}\right ) \, dx\\ &=x \left (e^2+\log (5)\right )+8 \int \frac {\left (-2+2 x+x^2\right ) \log ^7\left (x-\log \left (\frac {x}{2+x}\right )\right )}{x (2+x) \left (x-\log \left (\frac {x}{2+x}\right )\right )} \, dx\\ &=x \left (e^2+\log (5)\right )+\log ^8\left (x-\log \left (\frac {x}{2+x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 1.00 \begin {gather*} x \left (e^2+\log (5)\right )+\log ^8\left (x-\log \left (\frac {x}{2+x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 24, normalized size = 1.00 \begin {gather*} \log \left (x - \log \left (\frac {x}{x + 2}\right )\right )^{8} + x e^{2} + x \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (-8 x^{2}-16 x +16\right ) \ln \left (-\ln \left (\frac {x}{2+x}\right )+x \right )^{7}+\left (\left (x^{2}+2 x \right ) \ln \relax (5)+\left (x^{2}+2 x \right ) {\mathrm e}^{2}\right ) \ln \left (\frac {x}{2+x}\right )+\left (-x^{3}-2 x^{2}\right ) \ln \relax (5)+\left (-x^{3}-2 x^{2}\right ) {\mathrm e}^{2}}{\left (x^{2}+2 x \right ) \ln \left (\frac {x}{2+x}\right )-x^{3}-2 x^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 21, normalized size = 0.88 \begin {gather*} \log \left (x + \log \left (x + 2\right ) - \log \relax (x)\right )^{8} + x {\left (e^{2} + \log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.53, size = 23, normalized size = 0.96 \begin {gather*} {\ln \left (x-\ln \left (\frac {x}{x+2}\right )\right )}^8+x\,\left ({\mathrm {e}}^2+\ln \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 19, normalized size = 0.79 \begin {gather*} x \left (\log {\relax (5 )} + e^{2}\right ) + \log {\left (x - \log {\left (\frac {x}{x + 2} \right )} \right )}^{8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________