Optimal. Leaf size=28 \[ e^{\frac {1}{5} \left (e^5+\frac {2+e}{3}-2 x^2+\frac {\log (x)}{x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.45, antiderivative size = 37, normalized size of antiderivative = 1.32, number of steps used = 2, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {12, 6706} \begin {gather*} e^{\frac {-6 x^3+3 e^5 x+e x+2 x}{15 x}} x^{\left .\frac {1}{5}\right /x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{\frac {2 x+e x+3 e^5 x-6 x^3+3 \log (x)}{15 x}} \left (1-4 x^3-\log (x)\right )}{x^2} \, dx\\ &=e^{\frac {2 x+e x+3 e^5 x-6 x^3}{15 x}} x^{\left .\frac {1}{5}\right /x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.04 \begin {gather*} e^{\frac {1}{15} \left (2+e+3 e^5-6 x^2\right )} x^{\left .\frac {1}{5}\right /x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 29, normalized size = 1.04 \begin {gather*} e^{\left (-\frac {6 \, x^{3} - 3 \, x e^{5} - x e - 2 \, x - 3 \, \log \relax (x)}{15 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 23, normalized size = 0.82 \begin {gather*} e^{\left (-\frac {2}{5} \, x^{2} + \frac {\log \relax (x)}{5 \, x} + \frac {1}{5} \, e^{5} + \frac {1}{15} \, e + \frac {2}{15}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 0.89
method | result | size |
risch | \(x^{\frac {1}{5 x}} {\mathrm e}^{\frac {{\mathrm e}^{5}}{5}-\frac {2 x^{2}}{5}+\frac {{\mathrm e}}{15}+\frac {2}{15}}\) | \(25\) |
norman | \({\mathrm e}^{\frac {3 \ln \relax (x )+3 x \,{\mathrm e}^{5}+x \,{\mathrm e}-6 x^{3}+2 x}{15 x}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 23, normalized size = 0.82 \begin {gather*} e^{\left (-\frac {2}{5} \, x^{2} + \frac {\log \relax (x)}{5 \, x} + \frac {1}{5} \, e^{5} + \frac {1}{15} \, e + \frac {2}{15}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.33, size = 26, normalized size = 0.93 \begin {gather*} x^{\frac {1}{5\,x}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^5}{5}}\,{\mathrm {e}}^{\frac {\mathrm {e}}{15}}\,{\mathrm {e}}^{2/15}\,{\mathrm {e}}^{-\frac {2\,x^2}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 32, normalized size = 1.14 \begin {gather*} e^{\frac {- \frac {2 x^{3}}{5} + \frac {2 x}{15} + \frac {e x}{15} + \frac {x e^{5}}{5} + \frac {\log {\relax (x )}}{5}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________